
Univerza v Ljubljani

Fakulteta za Računalnǐstvo in Informatiko

Fakulteta za Matematiko in Fiziko

Klemen Simonič

Strukturne lastnosti v omrežjih in

njihova uporaba v napovedovanju

manjkajočih lastnosti

Diplomsko delo

na interdisciplinarnem univerzitetnem študiju

Mentor: Vladimir Batagelj

Somentor: Primož Škraba

Ljubljana, 2013

University of Ljubljana

Faculty of Computer and Information Science

Faculty of Mathematics and Physics

Klemen Simonič

Network structural properties and

their application to missing property

prediction

Diploma Thesis

University Study Program of Computer Science and

Mathematics

Mentor: Vladimir Batagelj

Co-mentor: Primož Škraba

Ljubljana 2013

Univerza v Ljubljani

Fakulteta za Računalnǐstvo in Informatiko

Fakulteta za Matematiko in Fiziko

Klemen Simonič

Strukturne lastnosti v omrežjih in

njihova uporaba v napovedovanju

manjkajočih lastnosti

Diplomsko delo

na interdisciplinarnem univerzitetnem študiju

Mentor: Vladimir Batagelj

Somentor: Primož Škraba

Ljubljana, 2013

Rezultati diplomskega dela so intelektualna lastnina avtorja in Fakultete za ra-

čunalnǐstvo in informatiko Univerze v Ljubljani. Za objavljanje ali izkorǐsčanje

rezultatov diplomskega dela je potrebno pisno soglasje avtorja, Fakultete za raču-

nalnǐstvo in informatiko ter mentorja.

Besedilo je oblikovano z urejevalnikom besedil LATEX.

Izjava o avtorstvu diplomskega dela

Spodaj podpisani Klemen Simonič, z vpisno številko 63080156, sem avtor

diplomskega dela z naslovom:

Strukturne lastnosti v omrežjih in njihova uporaba v napovedovanju manj-

kajočih lastnosti.

S svojim podpisom zagotavljam, da:

• sem diplomsko delo izdelal samostojno pod mentorstvom Vladimirja

Batagelja in somentorstvom Primoža Škrabe,

• so elektronska oblika diplomskega dela, naslov (slov., angl.), povzetek

(slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko

diplomskega dela,

• soglašam z javno objavo elektronske oblike diplomskega dela v zbirki

”Dela FRI”.

Ljubljana, 24. april 2013 Podpis avtorja:

First, I would like to thank to my mentor prof. Vladimir Batagelj, who

led me through the process of writing a diploma and gave me many important

advices and comments.

I would especially like to thank to two of my colleges Jan Rupnik and

Primož Škraba. We spent numerous hours working together on a problem

“Predicting Missing Properties.” Many times our discussions went beyond

the main problem and their experiences and wisdom shaped my view of the

science. Jan’s and Primož’s advices were crucial for the outcome of this

research.

Marko Grobelnik, project manager of the department where I have been

working in the last four years, is the person who introduced me to the research

field. I am grateful to him for giving me this opportunity, which initiated my

“research career.”

Help and support from my mother Marjetka were crucial in the last years.

Her effort and hard work have always inspired me and helped me move for-

ward. Close relationships with my extended-family, grand-parents, uncles,

aunts and cousins have motivated me even further to work hard and pursue

my dream.

Contents

Acronyms and Abbreviations

Povzetek

Abstract

1 Introduction 1

2 Related Work 5

3 Structural Properties 7

3.1 Basic Definitions . 7

3.2 Network Structure . 9

4 Approach 17

4.1 Definitions . 18

4.2 Computing the property relevance vector 19

4.3 Structural Descriptions of Objects 20

4.4 Algorithm . 23

5 Datasets 25

5.1 DBpedia . 25

5.2 Freebase . 26

5.3 Dataset characteristics . 27

CONTENTS

6 Experiments 29

6.1 Evaluation protocol . 29

6.2 Baselines . 31

6.3 Comparison of Approaches . 32

6.4 Deleting several properties . 38

6.5 Degradation of datasets . 40

7 Implementation 45

8 Discussion and Future Work 49

Acronyms and Abbreviations

LOD Linked Open Data

RDF Resource Description Framework

DB DBpedia

WCC Weakly Connected Component

SCC Strongly Connected Component

Dir Directed

Nbh Neighbor

SP Shortest Paths

DK Diffusion Kernel

Povzetek

Dandanes ustvarimo ogromne količine podatkov, ki prihajajo iz različnih

virov: znanstvenih raziskav, senzorjev in socialnih komunikacij v obliki blo-

gov, novic in sporočil Twitter. Podatki so razumljiveǰsi, če so medsebojno

povezani – povezave med podobnimi članki na Wikipediji nam omogočajo

lažje razumevanje področja, iskalniki bazirajo na povezavah med spletnimi

stranmi. Ideja metode Linked Data je povezovanje še nepovezanih stvari s

pomočjo interneta.

Povezave v podatkih definirajo strukturiranost podatkov – podatkovne

baze so primer “popolno” strukturiranih podatkov, kjer podatkovna shema

predpǐse strukturo posamezni entiteti. Veliko podatkovnih zbirk v Linked

Data nima definirane sheme – podatki bi lahko bili bolje opisani. Pogo-

sto se tudi uporablja različna terminologija za opisovanje semantično enakih

podatkov.

Linked Data vsebuje več sto podatkovnih zbirk, ki so jih objavili posa-

mezniki ali organizacije v obliki formata RDF (Resource Description Fra-

mework). Vsaka podatkovna zbirka vsebuje množico trditev ali povezav, ki

povezujejo entitete oziroma vire v podatkih. Kvaliteta in velikost podatkov-

nih zbirk je različna od primera do primera, vendar so podatki o entitetah

pogosto pomanjkljivi. V luči te “nepopolne” strukture se pojavi naravno

vprašanje: do kakšne mere lahko samodejno identificiramo manjkajoče po-

datke?

Konkreten primer grafa RDF je prikazan na sliki 1.1 (Figure 1.1), kjer

so izpostavljene tri entitete oziroma objekti, Audi, Mercedes-Benz in Fiat.

POVZETEK

Opazimo lahko, da ima Fiat naslednje lastnosti: location, founder, industry,

manufacturer. Objekti imajo nekaj skupnih lastnosti (founder, manufactu-

rer), vendar so tudi nekatere lastnosti (parentCompany, name), ki jih imata

samo Audi in Mercedes-Benz. Primeri manjkajočih lastnosti objekta Fiat bi

lahko bili: name, parentCompany, subsidiary, formationYear.

V diplomskem delu je predstavljen pristop k reševanje tega problema, ki

temelji na iskanju podobnih objektov in uporabe njihovih lastnosti za na-

povedovanje morebitnih manjkajočih lastnosti. V primeru objekta Fiat, bi

lahko bil seznam podobnih objektov in njihovih podobnosti sledeč: (0.7,

Mercedes-Benz), (0.6, Audi). Seznam manjkajočih lastnosti in njihovih uteži

pa bi lahko izgledal: (0.62, name), (0.54, parentCompany), (0.32, formatio-

nYear), (0.13, subsidiary).

Primer uporabe našega pristopa je, da pomaga identificirati manjkajoče

lastnosti v dani podatkovni zbirki. S pomočjo priporočanja verjetno manj-

kajočih lastnosti, bi lahko uporabniki vodeno dodajali nova dejstva v po-

datkovno zbirko. Popularen primer je “Google Knowledge Graph” [21], ki

pomaga poiskati uporabniku smiselneǰse rezultate. Naš priporočilni sistem,

bi lahko učinkovito in strukturirano predlagal uporabniku tip informacije, ki

bi jo nato uporabnik vnesel v obstoječi graf znanja.

Glavna ideja našega pristopa je, da danemu objektu predlagamo manj-

kajoče lastnosti na podlagi njemu podobnih objektov – podobno kot pri-

poročanje uporabnikovih preferenc na podlagi drugih uporabnikov preferenc.

Ogrodje našega pristopa je sledeče: vhod v metodo je objekt skupaj z množico

njegovih obstoječih lastnosti. Izhod metode je uteženo zaporedje manjkajočih

lastnosti za vhodni objekt, kjer utež določa kako pomembna je manjkajoča

lastnost. Pristop je sestavljen iz treh glavnih korakov: najprej poǐsčemo

množico podobnih objektov za dani objekt. Ta korak je odvisen od naše

definicije podobnosti med objekti. Nato za vsakega izmed podobnih objek-

tov določimo obstoječe lastnosti. V tretjem koraku pa uporabimo obstoječe

lastnosti podobnih objektov, da izračunamo manjkajoče lastnosti vhodnega

objekta.

POVZETEK

Pomembno vprašanje v reševanju našega problema je: kako poiskati po-

dobne objekte? Definirali smo številne strukturne lastnosti grafa oziroma

omrežja, ki inducirajo različnost oziroma podobnost med objekti. Primera

enostavne strukturne lastnost omrežja so porazdelitev stopenj točk in po-

razdelitev oznak na povezavah. Povezanost omrežja opisujejo najkraǰse poti

med dvema točkama. Lokalno strukturo grafa opisujejo podgrafi, kot so

polno povezani podgrafi ali omrežni motivi. Nekatere imed teh strukturnih

lastnosti se ne da učinkovito izračunati oziroma shraniti, še posebno ne na

velikih podatkovnih zbirkah, kar je naš primer. Zato smo za računanje po-

dobnosti med objekti uporabili več “enostavnih” metod, ki smo jih razdelili

v dve kategoriji. Lokalne metod opisuje lokalno strukturo grafa tako, da

upoštevajo porazdelitev oznak na povezavah, ki so (ne)posredno povezane z

objektom, medtem ko globalne metode izkoristijo globalne lastnosti grafa,

kot so najkraǰse poti med točkami.

Za evaluacijo smo uporabili tri podatkovne zbirke iz Linked Data: DB-

mapped, DBraw in Freebase, tabela 5.1 (Table 5.1). Velikost posamezne

podatkove zbirke sega tudi čez 140 milijonov točk in 600 milijonov povezav.

Strukturiranost oziroma čistost podatkov niha od zbirke do zbirke, kar na-

kazujejo število različnih lastnosti, ki jih je v primeru DBraw zbirke več kot

40 tisoč.

Opravili smo obsežno evaluacijo s prej omenjenimi metodami na vseh treh

podatkovnih zbirkah. V evaluaciji smo uporabili številne temeljne oziroma

osnovne metode in preizkusili njihovo delovanje. Evaluacija je potekala na

način, da smo vhodnemu objektu izbrisali nekaj povezav in smo jih nato

poskušali napovedati z dano metodo kot manjkajoče lastnosti. Vǐsje so bile

uvrščene izbrisane lastnosti, bolǰso oceno je dobila metoda. V povprečju

so bile lokalne metode bolǰse od globalnih metod, vendar je bila med njima

prisotna izrazita nekoreliranost – za določene objekte so globalne metode

delovale bolǰse kot lokalne in obratno.

Veliko dela smo posvetili tudi skrbni programski izvedbi, ki je omogočila

izvajanje eksperimentov na tako velikih podatkovnih zbirkah. Uporabili

POVZETEK

smo številne pohitritve (npr. K-najbljižjih sosedov, razbitje prostora na

manǰse dele), ki so nam omogočile izvajanje eksperimentov v doglednem času.

Končni izdelek je demonstrativni program LODminer http://lodminer.

net, kjer lahko uporabnik preizkusi delovanje sistema.

Ključne besede: Linked Data, analiza grafov, omrežja, strukturne lastno-

sti, manjkajoče lastnosti, napovedovanje.

http://lodminer.net
http://lodminer.net

Abstract

The volume of available structured data is increasing, particularly in the

form of Linked Data, where relationships between individual pieces of data

are encoded by a graph-like structure. Despite increasing scales of the data,

the use and applicability of these resources is currently limited by mistakes

and omissions in the linking data.

In this diploma thesis, we look at the problem of predicting potential

instance properties (types of relations). Given a specific query node in our

multigraph dataset, can we correctly rank possibly omitted properties? We

propose a method based on leveraging properties from similar nodes in our

dataset.

In order to compute similar nodes, we define various network structural

properties, which induce dissimilarities between nodes. These structural

properties are based on either local or global processing of the underlying

network. Since their complexity highly varies, a special treatment needs to

be considered when dealing with networks containing hundreds of millions of

nodes and edges.

In our tool LODminer, we use weighted averages of property frequency

vectors over a set of similar nodes to determine the most likely missing in-

stance property. We investigate the performance of different dissimilarities

and compare them to several other methods on three large-scale datasets,

two based on DBpedia and one based on Freebase.

ABSTRACT

Mathematics Subject Classification [MSC2010]: 68R10 [Graph the-

ory], 68T30 [Knowledge representation], 05C82 [Small world graphs, complex

networks], 91D30 [Social networks].

CCS Categories and Subject Descriptors [1998 system]: G.2.2 [Graph

Theory], I.2.4 [Knowledge Representation Formalisms and Methods]: Seman-

tic networks, H.2 [Database Management]: Database Applications – Data

Mining.

Keywords: Linked Data, Graph Mining, Network, Structural Properties,

Missing Properties, Prediction.

Chapter 1

Introduction

In today’s world, we are producing data at an astounding rate: scientific

data, sensor data, as well as social data in the form of blogs, news articles

and Twitter. Data is much easier to interpret when it is interconnected —

the internal links on Wikipedia make the understanding of topics much easier

due to easy access to references; when searching the Web, we find relevant

content through links. The idea behind Linked Data is to connect previously

unlinked, but related data, using the Web.

Links in data also define how structured it is — databases, for example,

are “perfectly” structured data where a schema defines the descriptions for

each of the entities. Many organic datasets in Linked Data do not have a

predefined schema and entities are rather poorly described. Often, a varied

vocabulary is used to describe entities, with semantically identical entities

having different descriptions.

An often used framework to publish data on the web is the Resource

Description Framework (RDF) [34]. RDF data is published in a collection of

triples, each consisting of a subject, a predicate and an object. Each triple

can also be illustrated as a node1-arc-node2 structure, where node1 and node2

represent subject and object, respectively, and arc links the node1, node2 and

is labeled with a predicate. A set of such structures (triples) is also called an

RDF graph.

1

2 CHAPTER 1. INTRODUCTION

Audi

Volkswagen_Group

Lamborghini

Quattro_GmbH

Claus_Luthe

Audi_A6

August_Horch

“Audi”

“1909”

manufacturer subsidiary

p
ar

en
tC

o
m

p
an

y

Fiat

Giovanni_Agnelli

Fiat_Panda Turin

Italy

fo
u

n
d

er

location

Mercedes-Benz

Mercedes-Benz_CLS-Class

Stuttgart

Gottlieb_Daimler Karl_Benz

“Mercedes-Benz”

Daimler_AG

m
an

u
fa

ct
u

re
r

location

Automotive
industry

In-Property count

knownFor 1

employer 1

manufacturer 1

Out-Property count

parentCompany 1

subsidiary 2

industry 1

founder 1

formationYear 1

name 1

Descriptor for Audi

Figure 1.1: An example of a small LOD dataset. The graph describes three

resources, Audi, Mercedes-Benz and Fiat, and presents the associated prop-

erties.

Linked Data [7] now contains more than a hundred datasets published

by individuals and organizations in a RDF format. Each dataset contains a

set of assertions or links connecting facts or resources in the dataset. The

datasets vary in size and quality, but information about resources is often

incomplete. In light of this imperfect structure, a natural question is: to

what extent can we automatically identify what data is missing?

As an example, consider the RDF graph in Figure 1.1. The graph high-

lights three resources or objects, Audi, Mercedes-Benz and Fiat. We can

see that Fiat has the following four properties: location, founder, industry,

manufacturer. The objects share some common properties, founder, man-

ufacturer, but there are some properties (parentCompany, name) that the

Audi and Mercedes-Benz objects have and the Fiat object is missing. A

3

few examples of Fiat’s missing properties could be name, parentCompany,

subsidiary, formationYear.

In this thesis, we present an approach to this problem based on finding

similar objects and using their properties to predict possible missing prop-

erties. In the case of Fiat, the list of similar objects and their similarities

could be (0.7, Mercedes-Benz), (0.6, Audi). The list of missing properties

and their relevance could be (0.62, name), (0.54, parentCompany), (0.32,

formationYear), (0.13, subsidiary).

One application of this approach is to help datasets “ask” for missing

data. By recommending likely missing properties, users could be guided in

adding additional assertions to the datasets. For example, Google recently

published the Knowledge Graph [21], which it is hoped will help people find

more meaningful results. This type of recommendation system could be used

to suggest what type of additional knowledge can be inserted into the graph

in an efficient way.

Our contributions are summarized as follows:

• We describe various network structural properties that can induce dis-

similarities between nodes.

• We present a general approach to predicting missing properties based

on finding similar objects in the data.

• A scalable implementation of the approach above allowing for the anal-

ysis of very large graphs with over 600M edges and 140M nodes.

• An empirical analysis of the performance of different dissimilarities

along with an extensive comparison with performance with other meth-

ods on three different datasets.

• The analysis also provides insights into the structural similarities and

differences of the three datasets.

• A demonstration recommendation system for producing ranks of miss-

ing properties (http://lodminer.net) on the DBpedia dataset.

The thesis is organized as follows. We first give an overview of related

http://lodminer.net

4 CHAPTER 1. INTRODUCTION

work in Chapter 2. Network structural properties are presented in Chapter 3.

Chapter 4 presents the general approach taken in solving our problem. The

datasets that we consider are presented in Chapter 5. Extensive evaluation

and experiments are presented in Chapter 6. Chapter 7 describes crucial

implementation details allowing us to solve the problem at scale. Finally,

discussion and future work are presented in the chapter 8.

This work is an extended version of the paper Predicting Missing Properties

in Linked Data Datasets [31], which was submitted to 19th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining. The paper reports the

results of the research that was conducted by Klemen Simonič, Jan Rupnik

and Primož Škraba at Jožef Stefan Institute.

Chapter 2

Related Work

There has been an enormous recent interest in Linked Data. Work in this area

typically falls into three categories: publishing of domain-specific datasets [11,

17], applications of existing datasets [4, 28] and algorithms for construction,

correction or cleaning of Linked Data [13, 24].

The work in this area generally concentrates more on semantic approaches,

however our work is closely related to the work presented in [26]. The authors

addressed the same problem of predicting missing links in data and proposed

two approaches to instance property recommendation: a classification-based

and co-occurrence-based approach. The classification-based approach could

be seen as a special case of our approach, where the smoothing parameter is

sufficiently large. The co-occurrence based approach is based on association

rule mining for recommendation and we included it in our evaluation. An

important difference between our work and [26] lies in the scale and level of

detail of the evaluation. The largest LOD in our study includes 6×108 triples

and 1.4 × 107 nodes, whereas the largest set considered in [26] is 2.8 × 104

triples and 4.4× 103 nodes.

The problem of predicting missing links occurs in several other contexts.

There is the related problem of inferring the domain range of binary relations

occurs in schema induction [33, 27]. A key difference is that we focus on rec-

ommending properties for individual instances (with no class information),

5

6 CHAPTER 2. RELATED WORK

rather than object class based predictions. A data driven approach for infer-

ring unseen triples was recently proposed in [25]. The approach is based on a

low rank tensor decomposition of the triplet cube. Inferring possible triples is

a harder and more general problem than predicting possible properties for a

given resource. The tensor decomposition based approach is limited to RDF

graphs with hundreds of types of properties (networks in this paper include

tens of thousands of types of properties).

Similar work includes predicting or recommending links in social network,

where the problem is to predict the interaction between the members [3, 22].

Chapter 3

Structural Properties

In this chapter we present various structural properties or characteristics that

can be computed in a given graph or network. Some of these characteristics

can be efficiently computed (with a single pass through the graph), while for

others, the best known algorithms run in higher polynomial or even expo-

nential time. First we define basic graph and network concepts that are used

through out this work and afterward we present the structural properties in

the order of their complexities.

3.1 Basic Definitions

We say a graph is an ordered pair G = (V, L), where V is a set of nodes (or

vertices) and L is a set of links. Sometimes, we denote the set of nodes and

the set of links of a graph G = (V, L) also as V (G) and L(G), respectively.

A link can be either undirected – an edge, or directed – an arc. The set of

all edges is denoted by E, and the set of all arcs is denoted by A, therefore

L = E ∪ A. If E = ∅, the graph is directed, and if A = ∅, the graph is

undirected. Every link has two end-nodes. In an arc one is the initial

node or source and the other is the terminal node or target. We can move

only from initial to terminal node (the direction of the arc). With e(u, v)

we express the fact that using link e, we can move from node u to node v.

7

8 CHAPTER 3. STRUCTURAL PROPERTIES

A link with one node as both the source and the target is called a loop.

We only consider graphs with finite number of nodes and links, denoting the

cardinalities n = |V |,m = |L|.

A Network N = (V, L,P ,W) consists of:

• A graph G = (V, L), where V is the set of nodes and L is the set of

links,

• P is the set of node value functions, p : V → A,

• W is the set of link value functions, w : L→ B.

Informally, we can say that Network = Graph + Data, a combination of

topological structure and data about the nodes and links.

The in-neighbors and out-neighbors of a node v are defined as:

inneigh(v) = {u : ∃e ∈ L : e(u, v)}, outneigh(v) = {u : ∃e ∈ L : e(v, u)}.

The neighbors of a node v are defined as: neigh(v) = inneigh(v)∪outneigh(v).

The in-degree and out-degree of a node v are defined as:

in-degree(v) = |inneigh(v)|, out-degree(v) = |outneigh(v)|.

The degree of a node v is defined as: degree(v) = |neigh(v)|.

Graph S is a subgraph of a graph G, if V (S) ⊆ V (G) and L(S) ⊆ L(G). If

S is a subgraph of G, then G is said to be a supergraph of S. A subgraph S

of a graph G is called an induced subgraph by a set of nodes W ⊂ V (G),

if V (S) = W and L(S) = {e ∈ L(G) : ∃u, v ∈ W : e(u, v)}.

A walk from u to v is a sequence u = v0, e1, v1, e2, v2, . . . , ek, vk = v, where

ei links nodes vi−1 and vi, i = 1, . . . , k. The sequence is a semiwalk (or

chain) from u to v, if ei connects (direction is not important) nodes vi−1 and

3.2. NETWORK STRUCTURE 9

vi, i = 1, . . . , k. A path is a walk where all the nodes in the sequence are

different.

Nodes u and v are weakly connected if there exists a semiwalk between u

and v. Nodes u and v are strongly connected if there exists a walk from

u to v and a walk from v to u. Both relations are equivalence relations.

The subgraphs induced by equivalence classes are called weakly / strongly

connected components.

3.2 Network Structure

The simplest properties of a graph are its number of nodes, n, and number

of links, m. These are rough measures of “connectivity” of the graph. For

example, if the number of links is less than the number of nodes, then we

know that we have more than one weakly connected component. For simple

unlabeled directed graphs (graphs with no loops and no parallel arcs), it

holds m ≤ n(n − 1). For simple planar graphs with n ≥ 3 nodes (graphs

that can be drawn on the plane in such a way that its links intersect only at

their endpoints), it holds that the number of links is bounded by 3n− 6.

In general, we can define families of graphs based on the the number of

nodes and links. Two very popular families are dense and sparse graphs,

where the main idea is that dense graph is a graph where the number of links

is close to the number of links in a complete graph, while the average node

degree in a sparse graph is much smaller than the number of links in the

graph.

A more detailed quantitative relation between the number of nodes and

links is degree distribution of the graph, which is the probability distri-

bution of the node degrees over the graph. Formally, the degree distribution

Pdeg(d) of a graph is defined to be the fraction of nodes in the graph with

degree d:

Pdeg(d) =
ndeg(d)

n
, (3.1)

10 CHAPTER 3. STRUCTURAL PROPERTIES

(a) Degree distribution of the Barabási-

Albert Model for generating random

scale-free networks (log-log scale).

(b) In and out degree distribution

of English-Wikipedia hyperlink graph

(log-log scale).

where n is the number of nodes and ndeg(d) is the number of nodes having

the degree d. In the case of directed graph, we can compute the in-degree

and out-degree distribution separately.

A common phenomenon in real-world networks is a highly skewed degree

distribution, which often follows the power law Pdeg(d) ∼ dλ, where λ is

some constant. These types of networks are called scale-free networks and

have been studied in details in the last 15 years. Figure 3.1a shows how the

degree distribution of a random generated scale-free network using Barabási-

Albert Model follows the power-law. Figure 3.1b shows the in/out degree

distribution for a real-world network of English-Wikipedia hyperlink graph.

We can see that a majority of nodes (Wikipedia articles) have only a few

links to other nodes and there are only a few nodes with very high degree.

A related property to the degree distribution is the degree sequence.

This is a non-increasing sequence of a graphs node degrees. Degree sequences

have a nice property: isomorphic graphs have the same degree sequence; the

converse is not true: there exist non-isomorphic graphs with the same degree

sequence.

A natural step further is the node label and link label distributions

for labeled graphs – networks. The frequency distributions of node and link

labels are denoted by nP(l) and nW(l), where nP(l) is the number of nodes

3.2. NETWORK STRUCTURE 11

with node label l ∈ A, and nW(l) is the number of links with link label

l ∈ B, and the corresponding probability distributions are denoted by PP(l)

and PW(l).

Another interesting concept is connectivity of the graph. The simplest

connection between two nodes in a graph is a link. An often used measure

on the graph is the length of the shortest path between two nodes. In

the case two nodes are not connected, we can set the length of the path to

some large number, possibly infinity. There are many applications where

shortest paths are used intensively. Everyday examples include road routing,

where nodes are cities and links are roads between the cities with number

label, specifying the distance between the cities. Depending on the type

of the shortest path problem, we can use one of the standard algorithms:

Floyd–Warshall algorithm [18] (all pairs shortest paths), Bellman–Ford algo-

rithm [6] (single source problem with possibly negative weights), or Dijkstra’s

algorithm [14]) (single source problem with nonnegative weights).

For large graphs, the algorithms above quickly become impractical. In

this case, a good heuristic is the A∗ algorithm [9] which works well in practice.

If we plan to run the shortest paths node-to-node many times or we need real-

time performance, then some auxiliary data (linear amount in the size of the

graph) can be stored to speed up the queries. The authors in [19, 20] present

several different techniques, such as contraction hierarchies, transit node, hub

labeling and highway dimension, to achieve state of the art performance. In

cases when we are interested only in k-nearest neighbors, we can simply run

the breadth-first search algorithm and stop at a certain depth.

Connected components partition the graph into disjoint sets of nodes

and links. They give us an insight into how well the graph is connected

overall. There are two types of connected components: weakly connected

components (WCCs) and strongly connected components (SCCs).

We can compute several interesting distributions related to connected com-

ponents, such as distribution of:

12 CHAPTER 3. STRUCTURAL PROPERTIES

• number of nodes in WCCs,

• number of links in WCCs,

• number of nodes in SCCs,

• number of arcs in SCCs.

Experiments have shown that many real-world graphs, consists of one

giant WCC, which contains most of the nodes and links from the graph.

Therefore a lot of research focuses on investigating only the giant component.

When dealing with directed graphs, it is interesting to compute the ratio

between the sizes of the largest SCCs and WCCs, which tells us how well is

the largest connected component bidirectionally connected.

WCCs can be easily computed with a single depth-first search algorithm,

resulting in O(m) time and O(n) space complexity. SCCs can be computed

with the two well-known algorithms: Tarjan’s algorithm [32] and Kosaraju’s

algorithm [12]. They both have the same time O(n + m), which is optimal,

and O(n) space complexity.

The diffusion kernel is based on computing the matrix exponential of

the graph adjacency matrix [36]. The entries of the adjacency matrix A are

defined as ai,j = k, if nodes i and j are linked with k links. The exponential

diffusion kernel is defined as

K = eαA =
∞∑
i=1

αiAi

i!
, α > 0,

where the parameter α controls how local/global the similarities are and

is estimated from the data. The kernel sums contributions from all paths

between two nodes, discounting paths by their lengths. Therefore, diffusion

takes into account both the total number of paths between nodes along with

their respective lengths.

Centrality of a node determines the relative importance of a node within

the graph. An example of a simple centrality measure of a node can be its

degree. The closeness and betweenness centrality measures rely on the

identification and length of the shortest paths among nodes in the network.

3.2. NETWORK STRUCTURE 13

The idea of using the shortest distances is that the intermediary nodes in-

crease or delay the time taken for the interaction between the two nodes and

can distort the information as it travels between the nodes. Depending on

the given graph, directed or undirected, the next two definitions assume that

the graph is connected or strongly connected, in order to avoid division with

zero.

Closeness centrality measures the length of the shortest paths from a

node to all other nodes in the graph and is defined as the inverse of total

length. Formally,

CC(v) =
n− 1∑
u∈V dv,u

,

where dv,u is the shortest distance between nodes v and u.

Betweenness centrality measures the number of shortest paths that

pass through a node [8]. Formally,

CB(v) =
1

λ

∑
s 6=v 6=t∈V

σst(v)

σst
,

where σst is the total number of shortest paths from node s to node t, and

σst(v) is the number of those paths that pass through v. The constant λ

is a normalization factor and for directed graphs is (n − 1)(n − 2) and for

undirected graphs is (n− 1)(n− 2)/2.

Richer characteristics of the graph can be encoded in the form of sub-

graphs. Small subgraphs give us a deeper insight into the structure of the

graph and can enable us to uncover the structural design principles of a more

complex graph. Typically, “frequent” subgraphs are called building blocks or

network motifs of larger networks [23].

Computing all different connected induced size-k subgraphs (by a

set of nodes of size k) and their frequencies enable us to further understand

the structure of the graph. For example: if our graph represents a real-world

process, then connected induced size-k subgraphs capture the “relation” be-

tween the k individuals (nodes) in the process. Enumerating all connected

induced size-k subgraphs of a given graph is typically a very time consuming

process due to the large number of connected induced size-k subgraphs in a

14 CHAPTER 3. STRUCTURAL PROPERTIES

given graph. The upper bound on the number of connected induced size-k

subgraphs is
(
n
k

)
, where n is the number of nodes in the graph.

We studied the algorithm ESU, proposed by [35], which enumerates all

connected induced size-k subgraphs and each exactly once. This algorithm

can be trivially changed into a randomized algorithm, which unbiasedly enu-

merates only a certain fraction of all connected induced size-k subgraphs.

For large graphs, enumerating all connected induced size-k subgraphs is pro-

hibitive. In these situations, randomization or sampling is of crucial impor-

tance to solve the problem. In case we are interested only in size-3 subgraphs

(triads), authors of [5] presented a subquadratic algorithm O(m) for counting

triads in a large sparse network with a small maximum degree.

Recently, there has been an interesting paper on Enumerating Subgraph

Instances Using Map-Reduce [1], which describes how to find all instances of

a given ”sample” graph in a larger ”data graph,” using a single round of map-

reduce. This enables us to significantly speed up the process of enumeration

with additional computing resources.

Network motifs in a given network are small connected induced sub-

graphs (subnetworks) that occur with significantly higher frequencies than

would be expected in random networks [23]. Subgraph significance is typi-

cally determined by generating a set of random graphs under a given ran-

dom graph model. It is often required that a random graph model generates

graphs with the same degree sequence as the original network.

The authors of [23] computed network motifs on ecosystem food webs

dataset. Nodes represent groups of species and arcs point from nodes rep-

resenting predators to nodes representing its preys. A four-node motif was

found (bi-parallel motif), Figure 3.1, which indicates that two species that

are prey of the same predator both tend to share the same prey.

A clique in an undirected graph is a subset of its nodes such that every

two nodes in the subset are linked – complete subgraph of a graph. A max-

imal clique is a clique that can not be extended by including an adjacent

node. Finding cliques in a given graph is of great importance in many appli-

3.2. NETWORK STRUCTURE 15

Figure 3.1: Bi-parallel network motif.

cation areas. An often studied example are communities in social networks,

in which cliques are an approximation of dense-interacting communities of

people. In bioinformatics, clique finding procedures have been used to find

frequently occurring patterns in protein structure [16].

Listing all maximal cliques in a given graph is an NP-complete problem

and thus can take exponential time, because in the worst-case scenario there

may be an exponential number of cliques. Even so, there has been a dedi-

cated study in the algorithms for finding maximal cliques. The best practical

algorithms are based on the Bron–Kerbosch algorithm [15, 10].

We introduced several structural properties that can be computed in a

given graph or network. Some of these structural properties are expensive

to compute, especially on large datasets, which is our case. Based on these

circumstances, we decided to use a variation of the distribution of node and

link data, shortest paths and diffusion kernel. The next few chapters describe

in detail the problem itself, approach, datasets, experiments and implemen-

tation details.

16 CHAPTER 3. STRUCTURAL PROPERTIES

Chapter 4

Approach

The main premise of this work is that given an object, we can predict its

missing properties based on the properties of similar objects — much like

predicting preferences through the preferences of social connections.

The framework of our approach is summarized as follows: the input to

our method is an object with a set of known properties that are associated

with it. We refer to the object as the query object. The output is represented

as a sequence of relevance scored missing property candidates, where the

relevance scores (positive numbers) reflect how relevant a property is to the

given object. The relevance scores are encoded as a vector, denoted as the

property relevance vector.

Our approach consists of three steps: first, we find a set of objects that are

the most similar to the query object. This step relies on the definition of how

similarity is measured. In the second step each of the selected objects is used

to obtain a property frequency vector. Finally the property relevance

vector is obtained by aggregating the property frequency vectors, where we

use a weighted sum. We will first introduce some notation and then present

the technical details of the approach.

17

18 CHAPTER 4. APPROACH

4.1 Definitions

The LOD datasets are stored as a set of assertions of the form (u, v, p),

where u and v are nodes and p is a property linking the two nodes. Datasets

of such form can be naturally represented as networks.

The input to our method is a network N = (V,A, t, w), where:

• t : V → {object, literal},
• w : A→ P .

The network contains two types of nodes, objects and literals. Literals are

used to identify values such as numbers and dates, so in our problem, we only

recommend properties for objects. This differentiation is specified by input

function t. We denote the set of objects by O = t−1(object) ⊆ V . Since each

node in the network is an identifier of a concrete object or literal, each node

is a unique element in V .

We refer to the arc labels as properties and denote the indexed set of

possible properties by P =
{
p1, . . . , p|P |

}
. A pair of nodes can be linked by

several arcs. For every arc a ∈ A in the network it holds that: w(a(u, v)) =

p ↔ (u, v, p), where (u, v, p) is an assertion from the dataset. The elements

of the triple (u, v, p) are called the source, target and label respectively.

Finally, two nodes are neighbors if they are linked — here the link direction

is unimportant.

To each object o ∈ O we assign two vectors: in-property frequency vec-

tor fin (o) ∈ N|P | and out-property frequency vector fout (o) ∈ N|P |. The

i-th component of the in-property frequency vector is defined as:

fin(o)[i] = |{u ∈ V : (u, o, pi)}|
= |{u ∈ inneigh(o) : ∃a(u, o) ∈ A : w(a) = pi}|

4.2. COMPUTING THE PROPERTY RELEVANCE VECTOR 19

The out-property frequency vector is defined analogously. There are two

possible ranking tasks: ranking missing in-properties and ranking missing

out-properties. To simplify the presentation, we will focus on predicting

out-properties.

4.2 Computing the property relevance vector

Let us assume we are given a dissimilarity between objects, d : V ×V → R+
0 ,

with the following properties:

• d(o, o) = 0,

• d(o1, o2) ≥ 0,

• d(o1, o2) = d(o2, o1),

where o, o1, o2 ∈ O. The property relevance vector for recommending missing

out-properties for the given query object o is defined as:

g(o) :=
∑
oi∈Sk

e
−d(o,oi)

2

σ2 fout(oi), (4.1)

where Sk ⊂ O denotes the set of the closest k objects to o and σ represents

a Gaussian bandwidth parameter which is estimated from the data.

Determining the set Sk corresponds to the first step in our approach,

−d(o, oi)
2 represents the choice of the dissimilarity, fout(oi) represents the lo-

cal property relevance vector and e
−d(o,oi)

2

σ2 corresponds to the weight assigned

to the i-th object in Sk. For the task of recommending missing in-properties

we use fin(oi) as the local property relevance vectors.

It is often convenient to define d in terms of a normalized Mercer’s kernel

function 1 [29], k : V × V → R. Since a Mercer kernel induces a metric, we

can define our dissimilarity as:

dk(o1, o2) =
√
k(o1, o1)2 − 2k(o1, o2) + k(o2, o2)2.

1All dissimilarities used in this thesis are kernel based.

20 CHAPTER 4. APPROACH

Since the kernel k is normalized (k(x, x) = 1,∀x ∈ V), it follows that

dk(o1, o2)
2 = 2 − 2k(o1, o2). Finally, replacing 2 − 2k(o1, o2) with −k(o1, o2)

produces scores with equivalent rankings.

The property relevance vector clearly heavily depends on the choice of

dissimilarity d. In the following section, we will introduce several structural

descriptions of objects which induce dissimilarities between objects. We use

sometimes the term similarity instead of dissimilarity, which can be simply

thought of as the opposite of dissimilarity.

4.3 Structural Descriptions of Objects

In this section, we describe the structural descriptions of objects which can be

divided into the two following categories. Local descriptions encode the

node’s local network structure by storing various feature vectors based on

property distributions, while global descriptions exploit the global graph

properties such as graph distances between objects.

4.3.1 Local Descriptions

In our local approaches we will define dissimilarities in terms of normalized

kernels, explicitly constructed by using feature mappings. A feature map

is a function that maps objects to N -dimensional feature vectors.

φ : O → RN .

Using the kernel based formulation of dissimilarity, a feature map φ is used

to define a normalized kernel:

k(o1, o2) =
〈φ(o1), φ(o2)〉√

‖〈φ(o1), φ(o1)〉〈φ(o2), φ(o2)〉‖
,

where 〈·, ·〉 denotes the standard inner product.

We present three different feature vectors based on local graph informa-

tion. We focus on a local descriptions that are based on property distributions

4.3. STRUCTURAL DESCRIPTIONS OF OBJECTS 21

and can be computed efficiently. The main idea is that objects with similar

properties (in the neighborhood) represent similar things. We implemented

the following feature maps:

PropertyCount (Count): the property count feature map assigns to each

object o a vector of counts of properties associated with the object o (for

each possible property, we also store the number of times it appears with

respect to the object o). For a given o, we define its feature map as the sum

of its property frequency vectors,

φpc(o) := fin(o) + fout(o).

Note that this feature map is insensitive to the directionality of the property.

DirPropertyCount (DirCount): the directed property count feature map

is a direction sensitive variant of PropertyCount feature map. The feature

map is defined as

φdpc(o) := [fin(o), fout(o)].

NbhPropertyCount (NbhCount): neighborhood property count feature

map is defined as

φnpc(o) = φpc(o) +
1

|neigh(o) ∩O|
∑

o′∈neigh(o)∩O

φpc(o
′).

The first two maps count only properties of the given object, while this map

counts the properties of the neighbors of the given object as well. It represents

a locally smoothed version of PropertyCount and is suited for objects with a

low number of distinct properties.

4.3.2 Global Descriptions

Local descriptions assume a richness of the local structure of the network

making them well-suited for objects with high property support (DirProp-

22 CHAPTER 4. APPROACH

ertyCount) or objects with well-connected neighbors (NhbPropertyCount).

One alternative is to exploit the topological structure of the network – graph

component of the network.

To capture the global structure accurately, we remove literals from the

graph. We do not want to objects to be connected through literals (e.g. value

“100”), but rather if they share common objects. Consider the following ex-

ample: (Ljubljana, 1000, postalCode) and (kilometer, 1000, equalsMeters).

If we do not remove literals, unrelated objects, such as a city and unit of

distance can be similar. To ensure a well-connected graph, we also remove

directionality from the graph. We describe two global dissimilarities based

on graph and diffusion distances on the graph.

ShortestPaths: the length of the shortest path (or distance) between two

objects in the graph is a simple indicator of dissimilarity between two objects

(e.g. the distance between similar instances in a taxonomy is often low). A

problem with this method is that for a query object, the objects at a distance

1 typically represent objects of different types. However, such objects will

inevitably be assigned the highest weights in the scoring function, possibly

yielding poor results. Therefore, we decided to compute two dissimilarities

for a given object:

• ShortestPaths1 (SP1): the length of the shortest path between a

given object and any other object.

• ShortestPaths2 (SP2): the length of the shortest path of length at

least 2 between a given object and any other object.

DiffusionKernel (DK): is based on the diffusion distance in graph. We

defined the diffusion kernel in Section 3.2. In our experiments, we use an

unnormalized kernel to define the dissimilarity, because the normalization is

computationally prohibitively expensive.

4.4. ALGORITHM 23

4.4 Algorithm

This section presents the entire approach described so far in a short algorithm

written in a form of pseudo code. The algorithm consists of five phases:

1. compute the set of objects using the network input function t,

2. compute property frequency vectors (fin or fout) for every object in O,

3. compute the dissimilarities between object o and all the objects in O,

4. compute the property relevance vector for object o,

5. omit the existing properties of object o.

Note that the first, second and third phase – object set determination, prop-

erty frequency vectors and dissimilarity computation – can be computed in

the preprocessing step. This is important in the process of learning the

parameter σ, because it enables us to significantly speed up the learning

procedure.

24 CHAPTER 4. APPROACH

Algorithm 1 Missing Properties

Input: Network N = (V, L, t, w),

Dissimilarity d,

Query object o ∈ t−1(object),
Sigma parameter σ.

Output: Missing properties of object o.

{Phase 1: compute the set of objects O using the input function t.}
O = t−1(object)

{Phase 2: compute property frequency function for every object.}
vector P

for all u ∈ O do

P [u] = f(u)

end for

{Phase 3: compute dissimilarities between object o and other objects.}
vector D

for all u ∈ O do

D[u] = d(u, o)

end for

{Phase 4: compute property relevance vector for object o.}
vector R

for all u ∈ O do

R += e−D(u)2/σ2
P [u]

end for

{Phase 5: remove existing properties of object o from R.}
vector M = R \ P [o]

return M

Chapter 5

Datasets

In our experiments, we consider three datasets from the LOD cloud diagram:

two variants of DBpedia and Freebase. These were selected based on scale

and applicability to the missing property problem.

5.1 DBpedia

The DBpedia project [2] extracts information from Wikipedia and combines

this information into a large, cross-domain knowledge base. The data is pro-

vided in the Resource Description Framework (RDF) model, which is eas-

ily transformed into a graph/network. We consider two DBpedia datasets,

DBraw and DBmapped. Both datasets are based on Wikipedia infoboxes

— the tables at the top right-hand corner of Wikipedia articles. Each infobox

contains a set of properties and the corresponding property values.

DBraw (raw properties): contains all the properties from all the infoboxes

and templates within the English Wikipedia articles. The properties are not

cleaned or merged and there is no consistent ontology for the dataset. (e.g.

an infobox describing a person named Bob uses the dateOfBirth property,

while some other infobox describing a person named Alice uses the birithOf-

Date property).

25

26 CHAPTER 5. DATASETS

Feature DBmapped DBraw Freebase

#nodes 5.8M 11.1M 141M

#links 17.2M 47.2M 607M

#objects 2.2M 3M 23M

#properties 1296 44463 19700

avgDegree 5.92 8.45 8.58

avgInDegree 3.77 5.01 4.29

avgOutDegree 9.42 18.97 11.53

Table 5.1: General characteristics for the three datasets we used (note that

M stands for million).

DBmapped (mapped properties): each property is mapped onto a DB-

pedia ontology (e.g. semantically equal properties, such as in the example

above, are mapped to a single ontology property – DateOfBirth). The data is

therefore much cleaner and better structured than the raw properties dataset.

The ontology is not complete and properties not in the ontology are omitted.

Consequently, DBmapped is much smaller than DBraw.

5.2 Freebase

Freebase is a large collaborative structured knowledge base of general human

knowledge, which is composed mainly by its community members. It is the

underlying database for Google Knowledge Graph. It is the largest dataset

we considered containing hundreds of millions of assertions in RDF format.

5.3. DATASET CHARACTERISTICS 27

5.3 Dataset characteristics

In order to get a better understanding of the three datasets, Table 5.1 presents

an overview of dataset characteristics. We highlight the following observa-

tions:

• We are dealing with relatively large networks – the Freebase network

contains more than half a billion links.

• DBraw has the largest number of properties, although Freebase has

much more links. This is a sign that DBraw is a messier dataset than

either Freebase or DBmapped.

• The average degree grows with the size of the dataset.

• In all three datasets, the avgOutDegree is two or three times larger

than avgInDegree. This is due to the nature of the RDF description

– an object is described by numerous literals, which do not have any

out-properties.

28 CHAPTER 5. DATASETS

Chapter 6

Experiments

In our experiments, we only show results for out-properties. We performed

experiments on in-properties as well but the out-properties where the more

interesting case, since objects generally have more out than in-properties.

6.1 Evaluation protocol

The basic unit of evaluation is a tuple (o, {p1, p2, ..., pko}), containing an

object o in the network and its properties {p1, p2, ..., pko} which are deleted to

object o (ko is specific to the object o and can be defined as some percentage of

all the object o’s properties). Given a query object o, the algorithm outputs

a ranked list of possible missing properties. We compute evaluation metrics

on this list to measure the quality of the outputted ranking.

Given a ranking of the possible missing properties, we compute two eval-

uation metrics to measure the quality of the outputted ranking:

• inverse rank (IRank) = 1 / rank of deleted property

• top k =

1, rank of deleted property ≤ k

0, otherwise

Note that IRank metric is a stable metric in a sense that if only a few among

many of deleted properties are ranked very low, then this does not affect the

29

30 CHAPTER 6. EXPERIMENTS

average IRank much (e.g. if the deleted property placeOfBirth is ranked at

the 1000th place, this contributes to the IRank average only 1/1000. This is

a commonly used measure for evaluating a ranking system.

When deleting more than one property (k > 1), we compute the rank of

deleted property pi, 1 ≤ i ≤ k by disregarding the other deleted properties

pj, 1 ≤ i ≤ k, j 6= i from the outputted ranking (i.e. if for 5 deleted proper-

ties, they are returned as the first 5 results, they all have an effective rank

of 1).

This evaluation methodology allows us to compare the outputted ranking

with the “ground truth” (the datasets only provide which properties the

object o has; there is no explicit information about the missing properties

for the object o).

6.1.1 Sampling

It is computationally prohibitive to perform the evaluation on all possible

(o, {p1, p2, ..., pko}) tuples due to the size of the datasets. Therefore, we need

to construct a representative sample of (o, {p1, p2, ..., pko}) tuples, on which

we evaluate the algorithms. Because the distributions of the dataset are

skewed (power-law), we propose two sampling methods:

Power Sample. In this method, we first sample the objects and then sam-

ple its properties. Using a uniform distribution over the objects we select

a random subset SO ⊂ O of a specified size. For each object o ∈ SO, we

randomly select a given percentage p of its properties according to a uniform

distribution. The parameter p defines how many of the properties will be

deleted to the objects in SO.

While this is a natural approach, it skews towards more frequently oc-

curring properties. These “power properties” are easy to recommend, as we

illustrate with one of the baseline methods (PropertySupport – Section 6.2).

Uniform Sample. In this case, we first sample the properties and then

6.2. BASELINES 31

the objects. Using a uniform distribution, we select a random subset of

properties SP ⊂ P of a given size. For each p ∈ SP , we uniformly select N

objects which have property p. This ensures us that properties have been

chosen independently of their support and that we have exactly N objects

per every property in SP . We use this sampling method because it covers a

wide range of properties. We chose N = 10 so that there were a sufficient

number of distinct properties with this support while ensuring a selected

property occurred often enough to make results statistically significant.

6.2 Baselines

We first present four methods for computing missing properties, which we

call baselines. The purpose of these methods is the following:

• Measure the performance of simple approaches for the missing property

problem.

• Simple methods and their failure modes reveal additional information

about the structure of the given datasets.

• Comparison of the baselines performance against our method.

PropertySupport (Sup). Our initial baseline is to return a fixed ranking

of the properties. This ranking is created by sorting the properties in a non-

increasing order by their property support, i.e. the number of objects that

have a particular property. This method should perform well on properties

that occur frequently in the network.

RandomObjects (Rnd). The next method uses our general approach of

ranking properties based on summing the property frequency vectors across

a set of objects. However, the set of “similar” objects is chosen at random

rather than via similarity. This baseline gives an insight into the structure of

the dataset: the method should perform well on highly homogeneous datasets

where objects are associated with highly similar sets of properties.

32 CHAPTER 6. EXPERIMENTS

PropertyIntersection (Inter). The next baseline is a simplified version of

our approach based on local descriptions. It computes similarity by consid-

ering the number of properties that are shared with the query object. This

number is taken as the weight for the object and the rank is computed as the

weighted sum of objects’ property counts. Note that the method is compu-

tationally as complex as using the other local descriptions. The performance

of this method illustrates the utility of kernel smoothing and more complex

object descriptions.

PropertyCooccurrence (Cooc). For our final baseline we compare to

the algorithm described in [26]. The approach is based on association rule

mining and the idea is to approximate resource similarities through the co-

occurrence of properties. For example, if object o has property presidentOf,

then it is likely that it also has properties like precededBy, succeededBy, and

politicalParty.

Let o represent an object and L(o) = {p1, . . . , pm} represent the set of

out-going properties associated with o. Let C(p) denote the set of all out-

going properties that co-occur with p at least once. The authors define a

scoring function, confidence(p, o) for each possible property p 6∈ L(o) as:

confidence(p, o) =
∏

pi∈C(p)∩L(o)

confidence(pi ⇒ p),

confidence(pi ⇒ p) =
coocc(pi, p)

occ(pi)
, (6.1)

coocc(pi, p) = |{o ∈ O|pi ∈ L(o) ∧ p ∈ L(o)}|,
occ(pi) = |{o ∈ O|pi ∈ L(o)}|.

6.3 Comparison of Approaches

We first give an overview of the results of our experiments. Table 6.1 shows

the complete results for described methods on all three datasets. The results

6.3. COMPARISON OF APPROACHES 33

S
u
p

R
n
d

In
te
r

C
o
o
c

C
ou

n
t

D
ir
C
ou

n
t

N
b
h
C
ou

n
t

S
P
1

S
P
2

D
K

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

IR
an

k

DBmapped
DBraw
Freebase

Figure 6.1: The averaged IRank for the three datasets over all the methods.

Note the extremely low values for Sup, Rnd and Cooc.

are grouped according to the methods in three categories: baselines (first four

methods), local descriptions (fifth, sixth and seventh method) and global de-

scriptions (last three methods). We omit the results for DiffusionKernel

method on Freebase dataset, because of the expensive computation of the

kernel. In the Table 6.1, we show the IRank averaged over all runs and the

ratio of experiments where the deleted property was ranked within the top

five (Top5) and top fifty (Top50). To get a better sense of the meaning of

these numbers, we show the rank distributions for four of the methods in

Figure 6.2. Note that we show only the first thousand rankings with all

other rankings compressed into the final column. Note that other than Ran-

domObjects, the distributions all have a heavy tail which makes the standard

34 CHAPTER 6. EXPERIMENTS

0 200 400 600 800
100

101

102

103

104

rank

#
p
ro
p
er
ti
es

(a) RandomObjects

0 200 400 600 800
100

101

102

103

104

rank

#
p
ro
p
er
ti
es

(b) PropertyIntersection

0 200 400 600 800
100

101

102

103

104

rank

#
p
ro
p
er
ti
es

(c) DirPropertyCount

0 200 400 600 800
100

101

102

103

104

rank

#
p
ro
p
er
ti
es

(d) DiffusionKernel

Figure 6.2: The rank distributions cut off at 1000 properties for four methods

over baselines, local and global descriptions.

6.3. COMPARISON OF APPROACHES 35

deviations meaningless. Rather than simply show the average IRank, we

show Top5 and Top50 to give an indication of the spread of these distribu-

tions. For local descriptions, in nearly all cases (over 80%) we see the deleted

property was among the top 50 entries. For global descriptions, the figure

was lower but for DiffusionKernel, the deleted property was among the top

50 in 60% of the cases.

Overall, the local descriptions performed best followed by the global de-

scriptions. Unsurprisingly the baselines performed the worst although not in

the order expected. In addition to average performance, we also computed

the correlations between the performance of different methods. This is shown

graphically in Figure 6.3 with lighter color indicating a higher correlation.

Within a category, the performance of different methods was quite highly

correlated, but interestingly, the performance using local and global descrip-

tions did not correlate, implying that they perform well in different cases.

This is especially interesting in the case of Neighborhood Property Count and

the global descriptions. Both methods attempt to compensate for objects

with few properties. However, the Neighborhood Property Count correlated

highly with the other local descriptions, while global descriptions did not.

This suggests that global descriptions are a better way to deal with objects

with few properties. In the following sections, we compare the methods in

greater detail within the categories.

6.3.1 Baselines

Examining the performance of the baselines individually, we found that the

PropertySupport method performed badly on all three datasets since we used

a uniform sample. That is the sample consisted of many non-frequent proper-

ties. The method performed better on the power sample, which can be seen

in Section 6.4. The RandomObjects method exhibited poor performance.

This is an indication that the problem is nontrivial. This holds for all three

of datasets we considered. The IRank was always very low, which is not sur-

prising since the datasets are closely related to Wikipedia and so are highly

36 CHAPTER 6. EXPERIMENTS

heterogeneous.

The baseline PropertyIntersection, although simple, performed quite well.

This is especially true for the smaller and cleaner datasets (DPMapped).

The performance of the method degraded on the larger and noisier datasets

(Freebase and DBraw) although not critically. Recommendation on Freebase

resulted in roughly 40% of the deleted properties being ranked in the top 5.

Finally, the co-occurrence approach (Cooccurrence) performed badly on

all three datasets. This is surprising, since in [26] it is reported to perform

well on a variety of datasets. A possible explanation lies in the difference

between the scale of the datasets considered. We also not that the decom-

position of the confidence(p, r) makes an assumption of conditional inde-

pendence: P (p1, . . . , pm|p) =
∏m

i=1 P (pi|p). Applying the Bayes’ rule and

ignoring the factors which do not involve p (since they do not affect the

ranking), we get

P (p1, . . . , pm|p) ∝ P (p)m−1
m∏
i=1

P (p|pi) .

Omitting the factor P (p)m−1 drastically changes the ranking and could lead

to bad performance on graphs with power-law-like property distributions.

The second issue with the co-occurrence approach is that no smoothing of

probability estimates is used. Consequently, one must ignore the properties

pi which do not co-occur with p, using the set C(p).

6.3.2 Local Descriptions

In Table 6.1, we see that PropertyCount and DirPropertyCount methods have

very similar performance (average IRank ≈ 0.6 on DBmapped) with highly

correlated results. This indicates that storing the direction of the properties

does not significantly improve the performance. Both methods performed

very well, with more than 70% of deleted properties ranked among the top

5 properties on the DBmapped and DBraw datasets. The performance on

Freebase was slightly lower but still above 60%.

6.3. COMPARISON OF APPROACHES 37

NbhPropertyCount uses the property distribution of the query nodes

graph neighbors in addition to its own. The results of this method are lower

than in the case of either PropertyCount and DirPropertyCount. This is ex-

pected because neighborhood property distributions of objects are smoothed

version of property distribution of objects, therefore objects become more

similar to each other. The method works better in structured datasets

(DBmapped and Freebase), than in a messier datasets (DBraw).

We investigated further what occurs if we continue to smooth the neigh-

borhood property distribution. Let us define:

φn2pc(o) = φnpc(o) +
1

|neigh(o) ∩O|
∑

v∈neigh(o)∩O

φnpc(v),

φn3pc(o) = φn2pc(o) +
1

|neigh(o) ∩O|
∑

v∈neigh(o)∩O

φn2pc(v).

We refer to the first description as Nbh2PropertyCount (Nbh2-Count), which

is the sum of the NbhPropertyCount vectors of neighboring objects of a given

object. Similar, the second description is Nbh3PropertyCount (Nbh3Count),

which is the sum of the Nbh2PropertyCount vectors of neighboring objects

of a given object. Table 6.2 shows the results of applied smoothing in several

steps. We can see that the IRank and Top5 performance degraded with

increased smoothing of the property distribution. Going beyond immediate

neighbors in the smoothing case proved infeasible due to an explosion in the

number of neighbors over which we had to average.

6.3.3 Global Descriptions

In Table 6.1 we can see that ShortestPaths2 outperformed ShortestPaths1

method on all three datasets, which means that skipping immediate neighbors

(often objects of different type) improves the performance of the system.

The table shows that DiffusionKernel method performed better than ei-

ther of the methods based on shortest paths. This is because DiffusionKernel

takes into account both the length of the path as well as the number of paths

38 CHAPTER 6. EXPERIMENTS

of a given length between two objects. It is therefore a more robust descrip-

tion than simple shortest path methods. The distribution of ranks for the

DiffusionKernel are presented in Figure 6.2d. This shows a much heavier tail

for DiffusionKernel distributions than the distributions for local descriptions,

indicating a larger degree of smoothing occurring.

Performance across the data sets was consistent with the behavior we

saw with the local descriptions: performance on DBmapped and DBraw was

comparable although marginally better on DBmapped. Interestingly, for the

DiffusionKernel method, the situation was reversed. The method performed

better on DBraw than on DBmapped, suggesting that averaging over the

noisy links can improve performance. Performance on the Freebase dataset

was generally lower, although computing the diffusion kernel unfortunately

proved too computationally difficult, so we cannot compare results..

Finally, as a whole global descriptions were not as informative as local

descriptions. It is meant as a form of smoothing so its most meaningful com-

parison is with NhbPropertyCount. Comparing the correlation of NhbProper-

tyCount and the global descriptions with the best local description, DirProp-

ertyCount, we see that NhbPropertyCount is relatively highly correlated indi-

cating that it deteriorates performance while the low correlation with global

descriptions capture different information.

6.4 Deleting several properties

A natural question is what happens if we need to predict more than one

property (as may be the case in general). We perform this evaluation by

removing a fixed fraction of properties (both in and out) for each object in

the sample, but the ranking is only tested for out-properties. We refer to

this as query object degradation. Here, we use the power sample method

since it produces tuples of properties associated with one object. We fo-

cused on PropertyCount method since it was among top methods in previous

experiments.

6.4. DELETING SEVERAL PROPERTIES 39

Figure 6.3: Graphical representation of the correlation matrix between the

performance of the methods on the DBmapped dataset. A lighter color

indicates the higher correlation.

Several different fractions were considered, as we illustrate in Figure 6.4a.

Note that a fraction of 1.0 corresponds to all but one in-property being

deleted (we can not compute similarities on objects with no properties). We

observe a similar negative effect on IRank when deleting properties on both

DBmapped and DBraw, where the effect is more pronounced on the noisier

dataset DBraw. The degradation occurs gradually soon becoming almost lin-

ear for DBraw. For DBmapped the rate of degradation is slower but increases

at higher fractions. The interesting phenomenon is that even with only one

in-property, the average IRank is between 0.15 and 0.28. One factor is that

many properties that we are trying to predict are ubiquitous in the dataset

(such as “name”) and are easy to predict because many (similar) object have

40 CHAPTER 6. EXPERIMENTS

0 0.1 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fraction of removed properties

IR
an

k
DBmapped
DBraw

(a) Deleting properties.

0 0.1 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fraction of removed nodes / links

IR
an

k

nodes
links

(b) Deleting nodes and links.

Figure 6.4: Effect of degrading the datasets using the PropertyCount method:

(a) degrading the query objects; (b) degrading the network.

this property. The other factor is that after deletion of properties, objects

with only one in-property often have a very specific property (such as “asso-

ciatedMusicalArtist”) that belongs to a specific type of objects. And, when

computing the similarities to other objects, the objects of the same type are

the most similar and thus provide a relative good property recommendation.

However, this also indicates that on average even a single property contains

relevant information about the object. This is useful for the early stages of

data entry, where an object has only a few links.

Table 6.3 shows the IRank of PropertySupport baseline method for differ-

ent fractions of delete properties to objects.

6.5 Degradation of datasets

The results of predicting properties show that the three datasets (DBmapped,

DBraw and Freebase) are highly structured. An interesting question is: how

does changing the structure of the network affect the recommendation qual-

ity. To test this, we degrade the datasets by removing nodes, links and the

most popular properties. We perform this experiment on DBraw dataset

6.5. DEGRADATION OF DATASETS 41

using the PropertyCount method and a uniform sample.

Deleting nodes / links. First, we uniformly at random delete some frac-

tion of nodes or links from the graph, and then compute the recommendation

quality. The effects of deleting nodes and links are presented in Figure 6.4b.

We see a clear correspondence of performance degradation with information

removal. This effect is especially pronounced when deleting links.

Deleting popular properties. With the next experiment, we try to show

that deleting the most popular properties from the graph does not signifi-

cantly affect the results of recommending missing properties. For example,

deleting a property ”rdf:type” from the dataset should not affect the perfor-

mance of our method if it is robust. The effect of deleting K most frequent

properties from the network is reported in the Table 6.4. We can see that in

fact the performance improves, because we remove properties that contribute

to the local descriptions only because they are frequent.

42 CHAPTER 6. EXPERIMENTS

Method Dataset IRank Top5 Top50

Property

Support

DBmapped 0.01 0.006 0.05

DBraw 0.001 0.001 0.003

Freebase 0.00201 0.002 0.0182

Random

Objects

DBmapped 0.00769 0.0068 0.052

DBraw 0.00148 0.0006 0.0021

Freebase 0.0013 0.0002 0.0148

Property

Intersection

DBmapped 0.419 0.565 0.86

DBraw 0.25 0.315 0.773

Freebase 0.299 0.411 0.787

Property

Cooccurrence

DBmapped 0.00117 0.0001 0.0001

DBraw 0.000023 0.0 0.0

Freebase 0.000069 0.0 0.0

Property Count

DBmapped 0.60 0.750 0.927

DBraw 0.58 0.71 0.914

Freebase 0.540 0.629 0.818

DirProperty

Count

DBmapped 0.605 0.760 0.933

DBraw 0.599 0.72 0.921

Freebase 0.552 0.640 0.829

NbhProperty

Count

DBmapped 0.490 0.624 0.900

DBraw 0.363 0.443 0.765

Freebase 0.433 0.548 0.809

Shortest Paths1

DBmapped 0.116 0.140 0.520

DBraw 0.110 0.135 0.411

Freebase 0.041 0.056 0.338

Shortest Paths2

DBmapped 0.200 0.261 0.524

DBraw 0.184 0.232 0.520

Freebase 0.133 0.185 0.479

Diffusion Kernel

DBmapped 0.330 0.370 0.602

DBraw 0.409 0.445 0.676

Freebase – – –

Table 6.1: Numerical results for the different methods over our three datasets.

We show the averaged IRank along with the Top5 and Top50 statistics.

6.5. DEGRADATION OF DATASETS 43

Method IRank Top5 Top50

PropertyCount 0.60 0.750 0.927

NbhPropertyCount 0.490 0.624 0.900

Nbh2PropertyCount 0.477 0.604 0.902

Nbh3PropertyCount 0.435 0.550 0.868

Table 6.2: Numerical results for smoothing on the DBmapped dataset.

Fraction 0.1 0.2 0.4 0.6 0.8 1.0

DBmapped 0.289 0.293 0.292 0.293 0.293 0.293

DBraw 0.122 0.119 0.121 0.120 0.118 0.116

Table 6.3: The effect on averaged IRank for the PropertySupport method

when we delete different fractions of objects’ properties (query object degra-

dation).

K 1 5 10 20 50 100

DBraw 0.602 0.614 0.621 0.633 0.652 0.651

Table 6.4: The effect on averaged IRank when we delete the K most frequent

properties from the graph using the PropertyCount method.

44 CHAPTER 6. EXPERIMENTS

Chapter 7

Implementation

One of the key contributions of this work is an implementation which makes

the analysis given in the previous section feasible at the scale of the datasets

we consider. The data, code and a interactive demo is available at http:

//lodminer.net [30]. In this section, we highlight some of the key imple-

mentational details.

K-nearest objects. Computing similarities between a given object and

all the other objects results in a similarity vector, which contains similarities

of all the objects to the given object. The size of similarity vector is linear

in the number of objects in the dataset. Since our datasets contains mil-

lions or even tens of millions of objects, we can not afford to store the entire

similarity vector for every object we evaluate. We decided to take at most

K-nearest objects, where K is a parameter. Since the value of parameter

K can significantly affect the final results, we conducted the experiment in

which we varied the value of parameter K and measured the IRank of the

method. We decided to set K = 1000, which was experimentation showed

sufficient and kept memory usage to manageable levels.

Parameters. In Section 4.2, we introduced the bandwidth parameter σ,

which regulates the kernel smoothing. We automatically estimated the pa-

45

http://lodminer.net
http://lodminer.net

46 CHAPTER 7. IMPLEMENTATION

rameter from data, using standard cross-validation.

Shortest Paths. For the global descriptions, computing all the shortest

path distances of a query object is prohibitively expensive, especially in larger

datasets. Furthermore, the discrete nature of graph distance means there

are many objects with identical distances. Therefore, we used the following

notion of K-nearest objects with the methods ShorthestPaths1, Shorthest-

Paths2 :

• We took all the objects with shortest paths of length 1 from a given

object.

• We took 1000 objects with progressively larger length of shortest paths.

This allows us to efficiently compute (time and space wise) the shortest paths.

It also guarantees, that we have at least 1000 objects which have the length

of the shortest path from a given object at least 2, which is what we need

for the ShortestPaths2 global description.

Space partitioning. Using only K nearest neighbors significantly reduced

space usage. However, for a given query object, we still have to compute

the similarity to all other objects. Again, for large datasets this can be pro-

hibitively expensive. To speed up the algorithm, we first cluster the objects

into some number of clusters and then compute the dissimilarities for a given

object only to the objects that are in the same cluster as the object. Since

cluster size were much smaller than the total number of objects, we obtained

a significant speed up in the similarity computation phase. We used k-means

clustering on the datasets and compared the results with and without cluster-

ing for a range of number of clusters, and found the performance differences

to be negligible.

LODminer. As mentioned above, there is an interactive demo of this ap-

proach available at http://lodminer.net. The demo computes similar ob-

jects and missing properties for a query object using PropertyCount method

http://lodminer.net

47

on the DBmapped dataset. For example, the query object Aston Martin

returns the results:

• top 5 missing properties - (location, parentCompany, numberOfEmploy-

ees, product, revenue),

• top 5 similar objects - (Porsche, Piper Aircraft, TVR, Kia Motors,

Lamborghini).

LODminer runs online – for a given query object, similar objects and missing

properties are computed in real-time. To support this, each dataset has to be

preprocessed. The preprocessing step prepares and computes the basic data

for the demo. It also includes some of the above mention implementation

details. For two of our datasets, DBmapped and DBraw, we present in Table

7.1 time and space information for the preprocessing step.

Dataset Time Space

DBmapped 14 min 2.3 GB

DBraw 29 min 4.4 GB

Table 7.1: Time and space information of the preprocessing step in LOD-

miner.

48 CHAPTER 7. IMPLEMENTATION

Chapter 8

Discussion and Future Work

We recount the highlights and draw conclusions based on the extensive eval-

uation we performed. Overall, the most effective descriptors where the local

descriptions followed by the global descriptions and finally the baselines.

While it is unsurprising that some baselines performed poorly, it was sur-

prising that cooccurrence performed badly at scale. This shows how as-

sumptions must be adapted given the scale of datasets. Further, the initial

baseline of returning a fixed ranking highlights the importance of performing

the sampling in an appropriate way. Overall the directed property count

(DirPropertyCount) performed the best, but we saw that computing simi-

larity based on smoothing over larger neighborhoods had a negative effect

on performance. For global descriptions, however, smoothing had a positive

effect on performance (DiffusionKernel).

Comparing the performance of the methods across experiments, we found

that the performance of global descriptions and local descriptions was uncor-

related, suggesting that combinations of these methods could boost overall

performance. While simple convex combinations did not lead to improve-

ments, taking the best ranking for both global and local descriptions, we see

that for 90% of the cases, the deleted property was among the top 10 rec-

ommended. In future work, we may investigate how to combine the different

descriptions in order to improve performance. Finally, we also investigated

49

50 CHAPTER 8. DISCUSSION AND FUTURE WORK

the effect of degrading the quality of the datasets and found that property

information is robust across all three datasets.

Interesting future work lays in the area between assertions (concrete facts)

and rules (mechanisms to encode general phenomena). One possible ap-

proach is to use a reasoner or an inference engine in combination with a rich

ontology and a set of facts. This approach would enable us to do “smarter”

queries than the search engines we are using nowadays.

Bibliography

[1] F. N. Afrati, D. Fotakis, and J. D. Ullman, “Enumerating subgraph

instances using map-reduce,” CoRR, vol. abs/1208.0615, 2012.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.

Ives, “Dbpedia: A nucleus for a web of open data,” in ISWC/ASWC,

2007, pp. 722–735.

[3] L. Backstrom and J. Leskovec, “Supervised random walks: predicting

and recommending links in social networks,” in WSDM, 2011, pp. 635–

644.

[4] P. Barnaghi and M. Presser, “Publishing linked sensor data,” in The 3rd

International workshop on Semantic Sensor Networks 2010 (SSN10),

2010.

[5] V. Batagelj and A. Mrvar, “A subquadratic triad census algorithm for

large sparse networks with small maximum degree,” Social networks,

vol. 23, no. 3, pp. 237–243, 2001.

[6] R. Bellman, “On a routing problem,” DTIC Document, Tech. Rep.,

1956.

[7] T. Berners-Lee et al., “Linked data-the story so far,” International Jour-

nal on Semantic Web and Information Systems, vol. 5, no. 3, pp. 1–22,

2009.

51

52 BIBLIOGRAPHY

[8] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of

Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[9] I. Bratko, Prolog: programming for artificial intelligence. Addison-

Wesley, 2001.

[10] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an

undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577, Sep.

1973. [Online]. Available: http://doi.acm.org/10.1145/362342.362367

[11] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M.

Mitchell, “Toward an architecture for never-ending language learning,”

in AAAI, 2010.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2001.

[13] P. Cudré-Mauroux, P. Haghani, M. Jost, K. Aberer, and H. de Meer,

“idmesh: graph-based disambiguation of linked data,” in WWW, 2009,

pp. 591–600.

[14] E. Dijkstra, “A note on two problems in connexion with graphs,” Nu-

merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[15] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques in

sparse graphs in near-optimal time,” CoRR, vol. abs/1006.5440, 2010.

[16] D. Eppstein and D. Strash, “Listing all maximal cliques in large sparse

real-world graphs,” CoRR, vol. abs/1103.0318, 2011.

[17] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information

extraction from the web,” Commun. ACM, vol. 51, no. 12, pp. 68–74,

Dec. 2008. [Online]. Available: http://doi.acm.org/10.1145/1409360.

1409378

http://doi.acm.org/10.1145/362342.362367
http://doi.acm.org/10.1145/1409360.1409378
http://doi.acm.org/10.1145/1409360.1409378

BIBLIOGRAPHY 53

[18] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM,

vol. 5, no. 6, pp. 345–, Jun. 1962. [Online]. Available: http:

//doi.acm.org/10.1145/367766.368168

[19] A. V. Goldberg, “Shortest paths in road networks,” Slides, Microsoft

Research, 2011.

[20] A. V. Goldberg and C. Harrelson, “Computing the shortest

path: A search meets graph theory,” in Proceedings of the

sixteenth annual ACM-SIAM symposium on Discrete algorithms,

ser. SODA ’05. Philadelphia, PA, USA: Society for Industrial

and Applied Mathematics, 2005, pp. 156–165. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1070432.1070455

[21] Google, “Google knowledge graph,” http://www.google.com/

insidesearch/features/search/knowledge.html.

[22] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive

and negative links in online social networks,” in Proceedings of the

19th international conference on World wide web, ser. WWW ’10.

New York, NY, USA: ACM, 2010, pp. 641–650. [Online]. Available:

http://doi.acm.org/10.1145/1772690.1772756

[23] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon, “Network motifs: simple building blocks of complex networks,”

Science Signaling, vol. 298, no. 5594, p. 824, 2002.

[24] N. Nakashole, M. Theobald, and G. Weikum, “Scalable knowledge

harvesting with high precision and high recall,” in Proceedings of the

fourth ACM international conference on Web search and data mining,

ser. WSDM ’11. New York, NY, USA: ACM, 2011, pp. 227–236.

[Online]. Available: http://doi.acm.org/10.1145/1935826.1935869

[25] M. Nickel, V. Tresp, and H.-P. Kriegel, “Factorizing yago: scalable ma-

chine learning for linked data,” in WWW, 2012, pp. 271–280.

http://doi.acm.org/10.1145/367766.368168
http://doi.acm.org/10.1145/367766.368168
http://dl.acm.org/citation.cfm?id=1070432.1070455
http://www.google.com/insidesearch/features/search/knowledge.html
http://www.google.com/insidesearch/features/search/knowledge.html
http://doi.acm.org/10.1145/1772690.1772756
http://doi.acm.org/10.1145/1935826.1935869

54 BIBLIOGRAPHY

[26] E. Oren, S. Gerke, and S. Decker, “Simple algorithms for predicate

suggestions using similarity and co-occurrence,” in Proceedings of the 4th

European conference on The Semantic Web: Research and Applications,

ser. ESWC ’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 160–174.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-72667-8 13

[27] S. Rudolph, “Acquiring generalized domain-range restrictions,” in

Proceedings of the 6th international conference on Formal concept

analysis, ser. ICFCA’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp.

32–45. [Online]. Available: http://dl.acm.org/citation.cfm?id=1787746.

1787749

[28] M. Sabou, M. Dzbor, C. Baldassarre, S. Angeletou, and E. Motta, “Wat-

son: A gateway for the semantic web,” in Poster session of the European

Semantic Web Conference, ESWC, 2007.

[29] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analy-

sis. Cambridge University Press, 2004.

[30] K. Simonič, J. Rupnik, and P. Škraba, “Lodminer,” http://lodminer.

net/.

[31] ——, “Predicting missing properties in linked data datasets,” http://

lodminer.net/pubs/missing properties KDD.pdf, 2013.

[32] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM jour-

nal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[33] J. Völker and M. Niepert, “Statistical schema induction,” in ESWC (1),

2011, pp. 124–138.

[34] W3C, “Resource description framework (rdf): Concepts and abstract

syntax,” http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

http://dx.doi.org/10.1007/978-3-540-72667-8_13
http://dl.acm.org/citation.cfm?id=1787746.1787749
http://dl.acm.org/citation.cfm?id=1787746.1787749
http://lodminer.net/
http://lodminer.net/
http://lodminer.net/pubs/missing_properties_KDD.pdf
http://lodminer.net/pubs/missing_properties_KDD.pdf
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

BIBLIOGRAPHY 55

[35] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM

Trans. Comput. Biol. Bioinformatics, vol. 3, no. 4, pp. 347–359, Oct.

2006. [Online]. Available: http://dx.doi.org/10.1109/TCBB.2006.51

[36] L. Yen, A. Pirotte, and M. Saerens, “An experimental investigation

of graph kernels on collaborative recommendation and semisupervised

classification,” Information Systems Research, pp. 1–39, 2009. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

157.8467&rep=rep1&type=pdf

http://dx.doi.org/10.1109/TCBB.2006.51
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.8467&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.8467&rep=rep1&type=pdf

	Acronyms and Abbreviations
	Povzetek
	Abstract
	Introduction
	Related Work
	Structural Properties
	Basic Definitions
	Network Structure

	Approach
	Definitions
	Computing the property relevance vector
	Structural Descriptions of Objects
	Algorithm

	Datasets
	DBpedia
	Freebase
	Dataset characteristics

	Experiments
	Evaluation protocol
	Baselines
	Comparison of Approaches
	Deleting several properties
	Degradation of datasets

	Implementation
	Discussion and Future Work

