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ABSTRACT

Term co-occurrence data has been extensively used in many applications ranging from

information retrieval to word sense disambiguation. There are two major limitations of

co-occurrence data. The first limitation is known as the data sparseness problem or the

zero frequency problem: For a majority of pairs, the probability that they co-occur in even

a large corpus is very small. The second limitation is that in co-occurrence data, each term

is considered as a meaningless symbol, or in other words, terms do not have types, or any

semantic relationships with other terms. In this paper, we introduce a novel approach to

address these two limitations. We create concept aware co-occurrence data wherein each

term is not a symbol, but an entry in a large-scale, data-driven semantic network. We show

that with concepts or types, we are able to address the data sparseness problem through

generalization. Furthermore, using concept co-occurrence, we show that our approach can

benefit a large range of applications, including short text understanding.
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CHAPTER 1

INTRODUCTION

Co-occurrence of a word is a distribution over words that frequently occur in the same

context. For example, words that frequently co-occurr with the word apple include {orange,

banana, iPhone, iPad, CEO, vitamin}, while frequent co-occurring words for the word

book are {title, author, reader, page, ink} (we omitted the associated probabilities or

weights). Co-occurrence is important for modeling language and can be used in many

NLP applications.

1.1 Applications

When reading news or other type of text documents, we extensively use the co-occurrence

knowledge to understand the meaning of the text. After reading the following sentence,

“xyz is a big metropolitan area with many rich cultural societies”, we most likely identified

xyz as a (big) city, because we often see a word (concept) city interact with metropolitan

area, society, and culture.

We also use co-occurrence knowledge to figure out how to chunk the words. Given a

short text, “jordan 10 day weather forecast”, the more likely partition of the text is “jordan

10 day weather forecast”, rather than the partition “jordan 10 day weather forecast”. The

former partition makes more sense since country (Jordan) occurs more frequently with

weather forecast than a basketball shoe (jordan 10 ) does. We can use the co-occurrence

data to assign probabilities to partitions and choose the most likely partition.

Identifying antecedents of mentions in the text is another example where co-occurrence

knowledge can be very helpful. In the following sentences, “The play in the city was very



2

nice. It included many great actors.”, we can infer that the mention It refers to the play,

not the city, because the co-occurrence information tells us that plays co-occur more often

with actors than cities do.

Understanding short text (e.g. queries, posts) is another example where co-occurrence

knowledge is of great importance, since the context of the short text is very limited. Given

a query “april in paris lyrics”, we can use co-occurrence knowledge to figure out the

proper segmentation and disambiguation of the query, “april in paris [song] lyrics”, where

april in paris and lyrics are two segments in the query, and april in paris refers to the

concept song.

There has been a lot of existing work on obtaining word co-occurrence. Brown Corpus

co-occurrence [1] obtains the co-occurrences of semantically related pairs of nouns appear-

ing within a window of 250 characters. Topic models (e.g. LDA) are another example of

word co-occurrence modeling, where each topic is a probability distribution over words that

“generate” the topic [2]. Recent work on learning distributed word representations (e.g.

word2vec) [3, 4, 5, 6] can be also thought of as co-occurrence or context representations.

These representations have the property that if words are semantically similar, then the

corresponding word vectors should be close (nearby) in the vector space.

1.2 Limitations of Co-occurrence Data

A well-known limitation of co-occurrence data is data sparseness, which is also known as

the zero frequency problem [7]. For a majority of pairs, the probability that they co-occur

in even a large corpus could be very small. For example, we may observe that the two

words movie and premiere co-ocurr with high frequency. However, for a little known movie

x, the probability that x co-occurs with premiere is extremely small or even 0 in a large

corpus.

A lot of work has been done to address the zero frequency problem. Most such work

involves a statistical framework that estimates the probabilities for pairs that were rarely

observed or even unobserved in a given sample set [8]. Existing work also tries to reveal the

structure or hierarchical data organization for the words and terms, and use such structure
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for better prediction. For example, Hofmann et al. [9] proposed a novel family of mixture

models to explain the observed data by a finite number of shared aspects or clusters.

In this paper, we argue that the major limitation of co-occurrence data is not data

sparseness. Rather, the fundamental issue is that co-occurrence data lacks explicit se-

mantics, or in other words, it considers words and terms as atomic units, and no explicit

relationships exist among the words and terms. Because of this, we cannot predict the

co-occurrence between a rare pair based on the co-occurrences of other pairs that are

semantically related to the rare pair. It is not surprising that existing statistical framework,

in order to improve prediction, focuses on clustering, grouping, or revealing the internal

structure or hierarchical organization of the data. However, statistical modeling often has

limited power in revealing the most fundamental structure in the data.

We argue that the most fundamental structure is the type or the conceptual structure

in the data. If such knowledge is avalable, we will know that the co-occurrence data of

apple as a company would contribute to co-occurrence data of a concept company. Similarly,

co-occurrence data of apple as a fruit would contribute to co-occurrence representation of a

concept fruit. We can see that type information enables us to better estimate co-occurrence

for any pair of words or terms.

Making the type or the conceptual structure in co-occurrence data explicit also enables

a wide range of new applications. Currently, the co-occurrence {orange, banana, iPhone,

iPad, CEO, vitamin} for the word apple does not differentiate between concepts company

and fruit that the word apple maps to. This limits the use of such co-occurrences or context

representations in many NLP applications. One way to solve this problem is to obtain the

co-occurrence for a word given a particular concept (sense). In the apple example, we

would have two co-occurrence lists, one for apple as a fruit {orange, banana, vitamin}, and

another for apple as a company {iPhone, iPad, CEO}.

1.3 Overview of Our Approach

Instead of treating words or terms as atomic units, we include structures into co-

occurrence data. The structures with which we are concerned contain the following:
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• Conceptual structure. We use a large-scale, data-driven semantic network to provide

the underlying conceptual structure for the words and terms in our co-occurrence

data. This enables us to find not just the co-occurrence information for the word

apple, but for the word apple as a company or apple as a fruit. This also enables us

to relate the co-occurrence of apple and google, as well as co-occurrence of apple and

banana. Thus, it makes it easier to reason or inference co-occurrence probabilities

with the underlying conceptual system.

• Syntactic structure. We explore co-occurrence of two terms on the dependency tree.

For example, apple as a company may co-occur with verb phrases such as {produce,

design, invest in} (either as subject or direct object), while apple as a fruit, co-occurrs

with verb phrases such as {eat, digest, keep doctor away} (either as subject or direct

object). Similarly, we may collect co-occurring prepositional phrases for a word

or term as well. This strong typed co-occurrence information is valuable to many

applications.

In summary, the novelty of our work can be summarized as follows:

• We introduce term-concept co-occurrence, where the co-occurrence is obtained for a

term given its concepts.

• We present an approach to learn concept co-occurrence from term-concept co-occurrence.

• We obtain co-occurrences between noun phrases, not just single words.

• Our co-occurrences include verb phrases and prepositional phrases.

• We present a joint structured prediction model for short text understanding and

extensively evaluate the performance of concept co-occurrence vs. co-occurrence

alone.

• We present several NLP applications, where concept aware co-occurrence can be

naturally applied and potentially improve the performance of the system.



CHAPTER 2

RELATED WORK

Most of the existing work has been on term- or word-based representations and not

concept-based. Examples of work in this area are Brown Corpus co-occurrence [1], where

the author searched for co-occurrences of semantically related pairs of concrete nouns

appearing within a window of 250 characters. Another interesting work is co-occurrence

of antonym adjectives (big-little) [10], where they showed that adjectives tend to occur in

the same sentence as their antonyms far more frequently than expected by chance.

Topic models (e.g. LDA) “cluster” words that tend to co-occur into the same topic,

and can be thought of as a type of co-occurrence representation for the topics. There has

been extensive research in this area and some of the work uses existing concept knowledge

to improve topic models [2], but we were unable to find topical models that deal with

concepts exclusively. Additionally, it is hard to interpret or label the learned topics (kind

of concepts).

Recently, there has been a lot of work on learning distributed word representations

[3, 4, 5, 6]. The idea is to learn dense vectors for words, such that, if words are semantically

similar, then corresponding word vectors should be close (nearby) in the vector space. The

representations are learned for words (and some word phrases), but during learning there

is no injection of the concept knowledge about the word, resulting in a word representation

that is fairly insensitive to the concepts (senses) the word possesses.

Another major drawback of much existing work is that representations or co-occurrences

are between single words, and not phrases. We do not have the representation for phrases,

such as Bruno Mars, San Francisco, financial institution, or weather forecast. Word
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phrases are very important to obtain holistic representations. Additionally, they introduce

specificity and decrease the amount of ambiguity in the representations: for the term bank,

it is much more informative to know that it co-occurs with financial institution than simply

institution.

Moreover, the representation between concepts and noun phrases is not sufficient. Our

representations include verb phrases and prepositional phrases. For a given concept, what

are the typical verb phrases that interact with this concept, or, for a given verb phrase,

what are the typical concepts that interact with this verb phrase? Similarly, we have a list

of frequently used prepositional phrases with the concepts.

Some approaches rely on WordNet dataset, where among other information, each word

has a set of distinct synsets (concepts). The two major drawbacks with WordNet compared

to our IsA network is that WordNet does not have many proper nouns and there is no

typicality scores for the words. Proper nouns are very important, especially for learning

concepts related to people. The typicality is crucial for concept learning [11], since some

instances are much better prototypes for concepts than others (e.g. sofa is a good example

of concept furniture, while car char is not).



CHAPTER 3

DATA-DRIVEN SEMANTIC NETWORK

In our work, we create concept aware co-occurrence data, and the concepts in our data

come from a data-driven semantic network. Nodes in the semantic network are words

or terms (multiword expressions). Edges in the semantic network denote relationships

among the nodes. In our work, we are mostly concerned with the isA relationship, also

known as the hyponym-hypernym (instance-concept) relationship. Each isA relation is

also associated with conditional probabilities known as typicality scores. Formally, an IsA

relation is a tuple of the form (i, c, p(i|c), p(c|i)), where i is a hyponym (instance), c is a

hypernym (concept), p(i|c) is the typicality of an instance i given the concept c, and p(c|i)

is the typicality of concept c given the instance i. The typicality scores are important for

inferencing, because, for example, not every instance in a concept is equal. When someone

mentions bird, it is more likely we think of robin than penguin. This is captured by the

score p(robin|bird) > p(penguin|bird).

The isA relationship is important because it enables generalization, which lies at the

core of human cognition. Because of this, the isA relationship is the backbone of almost

every taxonomy, ontology, and semantic network. To understand its significance, consider

two terms a and b, and R(a, b), which denotes a certain relationship between a and b. It

can be shown that the isA relationship may be used to generalize R, or in other words,

it may enable us to know more about R. For example, if we know b′ is a hypernym or

hyponym of b, chances are R(a, b′) also holds. In our case, R may denote the co-occurrence

relationship, that is, R(a, b) holds if a frequently co-occurs with b. For instance, we may

have R(premiere, movie). Now, given that we know (x, movie) is an isA pair, therefore,
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x is a movie. No matter how little known x is, we may infer R(x, movie) from that of

R(premiere, movie).

We obtain the IsA network by extracting the hypernym-hyponym relationships from

sentences containing Hearst pattern (e.g. I have visited countries such as China, Japan,

and South Korea ⇒ country is concept with instances China, Japan, and South Korea).

There has been a lot of work on extracting high-quality IsA network from text data and

it is beyond this work. Examples of such datasets are Google ConceptNet and Microsoft

Probase [12]. Google Concept Net contains over 60 million nodes (hypernyms, hyponyms)

and over 140 million edges (hypernym-hyponyms relations).



CHAPTER 4

INSTANCE REPRESENTATION

Before we dive into instance representation, it is vital to understand that whenever

we refer to an instance, we always mean an instance of a certain concept. In other

words, instances and concepts are inseparable – we can not refer to an instance apple

without specifying one of its concepts, company or fruit. Formally, we are given a col-

lection of instance-concept pairs (i, c), where i is an instance and c is its concept (e.g.

(apple, company), (apple, fruit)). IsA network, described in the previous chapter, provides

instance-concept pairs, along with their typicality scores.

In our work, we decided to represent an instance with the context in which the instance

occurs. The context is extracted only within the same sentence and consists of co-occurring

noun, verb, and prepositional phrases.

Let our instance-concept pair be (apple, company) and the sentence be “iPhones pro-

duced by Apple are great mobile phones”. Then we extract the following co-occurring noun

phrases {iPhones, mobile phones}, verb phrase subject {}, verb phrase object {produced

by}, and preposition phrases {by} with instance apple of a concept company.

Formally, the representation of instance-concept pair (i, c), denoted as IR(i, c) is a tuple

with four components:

• NP (i, c) is a probability distribution over co-occurring noun phrases with instance i

of a concept c.

• V Psub(i, c) is a probability distribution over co-occurring verb phrases where instance

i of a concept c is a subject of the verb phrase.
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• V Pobj(i, c) is a probability distribution over co-occurring verb phrases where instance

i of a concept c is a direct object of the verb phrase.

• PP (i, c) is a probability distribution over co-occurring prepositional phrases where

instance i of a concept c is a prepositional object of the preposition phrase.

We can obtain the instance representations by extracting the co-occurring noun, verb, and

prepositional phrases from sentences from billions of documents. We explain the procedure

in detail in Chapter 8.



CHAPTER 5

CONCEPT REPRESENTATION

Each concept represents a set of instances and the instances describe or define the

concept. We are going to use instance-concept relationships, given by IsA network, and

instance representations to build a concept representation.

Let us assume the concept c is fruit and the instances are {orange, apple, tomato, olive},

with the corresponding typicalities p(orange|fruit), p(apple|fruit), p(tomato|fruit), and

p(olive|fruit). To obtain the concept representation for fruit, denoted by CR(fruit), we

compute the following weighted sum:

CR(fruit) ∝ p(orange|fruit)IR(orange, fruit)

+ p(apple|fruit)IR(apple, fruit)

+ p(tomato|fruit)IR(tomato, fruit)

+ p(olive|fruit)IR(olive, fruit).

We used the representation of instances (IR) to build a representation of a concept. In

the process, we consider how typical instances are for the concept, which aligns with the

concept theory that was introduced in the previous chapters.

Formally, concept representation CR(c) of a concept c is computed as follows:

CR(c) ∝
∑
i

p(i|c)IR(i, c),

where p(i|c) is the typicality score of an instance i being a concept c and IR(i, c) is the

instance representation of instance i of a concept c. The weight p(i|c) is applied to every

individual component (NP , V Psub, V Pobj , PP ) of the IR tuple.
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5.1 Verb Concept Representation

We have talked about the representation of a concept, where the concept representation

consists of co-occurring noun phrases, verb phrases, and prepositional phrases. Now, let

us take a look at verb phrase representation, which consists of co-occurring concepts for a

given verb phrase.

For a verb phrase watch, a list of co-occurring subject concepts is {Person, Child,

Student, Move Expert}, and a list of co-occurring object concepts is {TV Show, Movie,

Documentary, Game}. Verb phrase concept representation gives us the concepts that often

interact with verb phrase as a subject or as an object. It is a distribution over concepts

for subject and object arguments of a verb phrase.

Formally, verb concept representation V R(v) of a verb phrase v is a tuple with two

components:

• V Rsub(v) is a prob. distribution over concepts that are subjects of a verb phrase v.

• V Robj(v) is a prob. distribution over concepts that are objects of a verb phrase v.

We can obtain verb concept representation by using existing concept representation. Re-

member that CR(c) contains V Psub(c), distribution over verb phrases where c is a subject

of a verb phrase, and V Pobj(c), distribution over verb phrases where c is an object of a

verb phrase. We can compute the verb concept representation V R(v) as follows:

V Rsub(v) ∝
∑
c

p(c)V Psub(c, v),

V Robj(v) ∝
∑
c

p(c)V Pobj(c, v),

where p(c) is a probability of a concept c (from IsA network), V Psub(c, v) is a probability

of a verb phrase v given a concept c as subject, and similarly for V Pobj(c, v).



CHAPTER 6

SHORT TEXT UNDERSTANDING

In this chapter, we present how can we apply concept aware co-occurrence to short text

understanding. Short text usually does not have the syntax of a normally written language.

The context information within the short text is very limited due to its conciseness and

shortness. In recent years, short text has become ubiquitous: we use queries (short text)

to communicate our requests to a search-engine; writing and reading posts (short text)

on social networking websites is another example. Thus, understanding of short text has

tremendous value for the users and service providers.

By short text understanding we refer to determining the proper segmentation of the

short text, and disambiguation of the segments into their proper senses (concepts). In-

tensive knowledge processing techniques are crucial for successful understanding of short

text [13]. Our approach uses semantic network coupled with concept aware co-occurrence

knowledge to perform short text understanding. We propose a joint structured prediction

model that leverages this knowledge to compute the most likely understanding of the short

text. The purpose of this chapter is not to compare our system to other systems, but to

show that concept co-occurrence can boost the performance of short text understanding

over co-occurrence data alone.

6.1 Problem Definition

In this section, we formally define the problem of short text understanding. The input

is a sequence of tokens T = t1, . . . , tN that represents the short text. Examples of input
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are: april in paris lryics and harry potter watch. The task of short text understanding

consists of two subproblems:

• Segmentation of the input tokens into meaningful segments S = s1, . . . , sn.

• Disambiguation of the segments into their proper senses (concepts) C = c1, . . . , cn.

Thus, the output of short text understanding consists of segmentation and disambiguation

assignments to the input tokens.

For the first example, a possible understanding or interpretation of the query could be:

april in paris [song] lyrics [music],

where the segments are s1 = april in paris, s2 = lryics, and the disambiguated concepts

are c1 = song, c2 = music. A possible interpretation for the second example can be:

harry potter [brand] watch [accessory],

where the segments are s1 = harry potter, s2 = watch, and the disambiguated concepts

are c1 = brand, c2 = accessory.

6.2 Joint Structured Prediction Model

Segmentation and disambiguation are very related problems - in many cases to do

a correct segmentation, we need to disambiguate the phrases at the same time. This

motivated us to design a joint structured prediction model for short text understanding.

The output of the model is a joint assignment of segmentation and disambiguation to the

input short text.

Since short text consists of a small number of tokens, we can afford to enumerate all

possible segmentations. To enumerate all possible segmentations of a short text of length

n, it can take exponential time and space in n. However, queries are very short and rarely

consist of 10 or more tokens, thus typically n < 10. Moreover, since we operate with a

fixed and precomputed vocabulary of phrases, we do not need to enumerate all the possible

segmentations, but only all the segmentations in which segments belong to the vocabulary.

In practice, this significantly reduces the number of all possible segmentations.



15

For a particular segmentation, we exhaust all the possible concept assignments to the

segmentation. In Chapter 8, we explain how we group similar concepts to diverse concept

clusters, which gives us a very small number of different concept clusters for every segment,

thus exhausting all the possible concept assignments is not expensive.

At this point, we can enumerate all the possible segmentations and concept assignments:

at each step, we obtain a segmentation S and concept assignment C for the given input

tokens T .

6.2.1 Conditional Model

This section introduces conditional models that leverage the co-occurrence data to

compute the probability of a given short text understanding.

We denote Y = {(s1, c1), . . . , (sn, cn)} as the output by simply pairing the corresponding

segments and concepts. We also denote Y−i = Y \ {(si, ci)} as the output without the i-th

segment and concept. All of our conditional models are exponential models and have the

following form:

P (Y |T ) ∝ exp [Φ(Y, T )],

where Φ(Y, T ) is function that scores the output Y for the input tokens T . In all cases, the

output of short text understanding is generated by maximizing the score function Φ(Y, T )

over Y (as described in the previous section). In the sections that follow, we will define

a serious of models of increasing expressiveness / complexity by defining different scoring

functions Φ(Y, T ) over Y .

6.2.1.1 Simple Independent Model

Let us first take a look at a very simple model that assumes mutual independence

between tokens and pairs of segment-concept. Function Φ(Y, T ) factorizes as follows:
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Φ(Y, T ) = Φ(t1, . . . , tN , (s1, c2), . . . , (sn, cn))

=
N∑
i=1

Φ̂S(ti, (s1, c2), . . . , (sn, cn))

=

N∑
i=1

n∑
j=1

ΦS(ti, sj , cj)

Such independence assumption typically does not hold in real-world queries; however,

some kind of factorization is necessary, since we do not have and cannot practically obtain

multivariate joint scoring functions.

More importantly, the score ΦS(ti, sj , cj) depends only on the individual tokens, rather

than on the other segment and concepts pairs Y−j . This is a problem, because other

segments and concepts, Y−j , do not affect the score of the current segment and concept

pair (sj , cj).

Example: Let the query be bruno mars the lazy song, where the proper segmentation

is bruno mars and the lazy song. The simple independent model would not consider the

two proper segments, but rather individual tokens {bruno, mars, the, lazy, song}, when

computing the score ΦS(ti, sj , cj). In addition, it also does not take into consideration the

concepts of the other segments, which can significantly help with short text understanding:

concept singer (from segment bruno mars often co-occurs with concept song (from segment

the lazy song), thus co-occurrences between concepts can be very helpful.

What we really need is a model that takes into consideration the rest of the context

(other segments and concepts). We define such a model in the next section.

6.2.1.2 Global Model

In this section, we define a model that addresses the problems introduced in the previous

section. The global model is defined as follows:

Φ(Y, T ) =
n∑

i=1

Φ̂G(Y−i, si, ci, T )

Term Φ̂G(Y−i, si, ci, T ) denotes the score of the rest of the output Y−i, given the i-th

segment and concept. Intuitively we can think of this term as how well the i-th segment
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and concept pair (si, ci) correlates or generates the other segment and concepts pairs,

denoted by Y−i. The scoring function Φ̂G(Y−i, si, ci, T ) is a complex scoring function of

many variables. Thus, we need to further decompose the scoring function as follows:

Φ̂G(Y−i, si, ci, T ) =
n∑

j=1 i 6=j

ΦG(sj , cj , si, ci, T )

Function ΦG(sj , cj , si, ci, T ) is the pairwise score of i-th and j-th segment-concept pair.

We can think of pairwise score as as the strength of correlation between i-th and j-th

segment-concept pair.

Note that the model does not directly operate with tokens, but rather with segments

(sequence of tokens), which alleviates the independence assumption between tokens made

in the previous model. The model also uses the concept information of every other segment.

This solves many problems with the Simple Independent Model from the previous section,

and give us a global model that takes into account all of the context.

We have left to define the pairwise score ΦG(sj , cj , si, ci, T ). In the next two sections,

we define two different types of scoring functions ΦG, depending on the type of data we

use: co-occurrence or concept co-occurrence.

6.2.1.3 Co-occurrence Model

The first model assumes that the pairwise score decomposes into a scoring function

between a pair of segments, and a scoring function between a concept and a segment. This

gives the following scoring function:

ΦG(sj , cj , si, ci, T ) = ΦG1ss(sj , si) + ΦG1cs(cj , si)

We can think of score ΦG1ss(sj , si) as the correlation between segment sj and segment si.

Score ΦG1cs(cj , si) is the correlation between concept cj and segment si.
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6.2.1.4 Concept Co-occurrence Model

The second model assumes that the pairwise score decomposes into a scoring function

between two segments and a concept, a scoring function between segment and concept,

and a scoring function between pair of concepts. This gives the following model:

ΦG(sj , cj , si, ci, T ) = ΦG2ssc(sj , si, ci) + ΦG2sc(sj , ci)

+ ΦG2cc(cj , ci)

6.2.2 Learning

We have defined three different models that score the output Y given the input tokens

T . As mentioned before, these models require joint inference across all the segmentations

and concept assignments. However, joint learning is infeasible because there is no labeled

data. Thus, we propose to use a conditional constraint model framework that admits

decomposed learning and still allows joint inference. We define the scoring functions using

co-occurrence data in Table 6.1.

Term TC(ti, tj) denotes the term-term co-occurrence probability between terms ti and

tj . This is a standard term-term co-occurrence without any information about the concepts.

Note that the co-occurrence model defined in the previous section is unable to use the

provided concept information, since term-term co-occurrence data is not concept aware.

Both scoring functions ΦG1ss(sj , si) and ΦG1cs(cj , si) treat the input arguments as terms,

regardless of whether the input arguments are concepts.

In the concept co-occurrence model, we are directly leveraging instance-concept co-

occurrence data ΦG2ssc(sj , si, ci), which has a very different co-occurrence distribution if we

Table 6.1. Definitions of scoring functions in terms of co-occurrence.

Scoring function Co-occurrence

ΦG1ss(sj , si) log(TC(sj , si))

ΦG1cs(cj , si) log(TC(cj , si))

ΦG2ssc(sj , si, ci) log(IR(si, ci).NP [sj ])

ΦG2sc(sj , ci) log(CR(ci).NP [sj ])

ΦG2cc(cj , ci) log(CR(ci).NP [cj ])
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change the concept of a given instance (co-occurrence for apple as fruit is much different

from co-occurrence for apple as a company). This brings tremendous improvement to

the model. We also use concept co-occurrence weight ΦG2sc(sj , ci) between concept and

segment, which directly deals with the co-occurrence sparsity problem that was introduced

previously. In addition, we also use the concept co-occurrence between the concepts

themselves ΦG2cc(cj , ci), which brings additional signal into the model. Note that notation

IR(si, ci).NP [sj ] denotes the instance co-occurrence probability of term (noun phrase)

sj with instance si as a concept ci. Similarly, CR(ci).NP [sj ] denotes the concept co-

occurrence probability of term sj (noun phrase) with a concept ci.

The models that we defined use solely co-occurrences between noun phrases. To fully

leverage the concept co-occurrence knowledge, we can extend the models to use co-occurring

verb and prepositional phrases.

6.3 Experiments

In this section, we present the comparison of the co-occurrence model vs. the concept

co-occurrence model on a set of labeled web-search queries.

6.3.1 Dataset of Labeled Queries

Since there is no publicly available benchmark or dataset of labeled queries that we

know about, we generated a dataset of labeled queries ourselves. By labeled dataset we

mean that we have the information about the proper segmentation and disambiguation

(concept assignment) of every query in the dataset. We present an approach that leverages

the IsA network to generate labeled queries.

To do this effectively, we define a query pattern, which is simply a sequence of words

(tokens) and concepts. An example would be [song] lyrics, where song is a concept and

lyrics is a token. We can have multiple concepts or tokens intermixed in a single query

pattern. Given such a query pattern, we sample instances of concepts from the query

pattern using IsA network, and then replace the concepts with sampled instances to obtain

a concrete query. Let us say we sample {april in paris, grenade, the way we were} instances

of a concept song, which give us the following concrete queries: april in paris lyrics, grenade
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lyrics, and the way we were lyrics. This generative process gives us labeled queries: we

know the proper segmentation of the query as well as the concept assignment to segments.

More examples of query patterns: [movie] soundtrack, [fruit] vitamin, [food] recipe,

[watch brand] watch, watch [tv show], read [book].

6.3.2 Evaluation

In this section, we define two metrics to measure the similarity between two labeled

queries. The metrics will be used for evaluation and comparison of our models.

Exact Metric is a simple binary metric and requires both labeled queries, q1 and q2,

to be exactly the same in order to be one; otherwise the metric is zero. This is a very strict

metric: a single mistake, either with segmentation or concept assignment, and the entire

result will receive a score of zero. Formally, we can define the metric as follows:

em(q1, q2) =

{
1 q1, q2 same segments and concepts
0 otherwise

Rank Metric is a more forgiving version of the exact metric in a sense that it does

not require the exact matching of the concepts in the labeled queries. The idea is that the

output of the short text understanding is a ranking over the concepts for segments in short

text (so far we had just a single concept for every segment). This enables us to compute

the rank of the labeled concepts in the output.

In the case of query april in paris lyrics, the system would output a concept ranking

{ (1) song, (2) hit, (3) book } for segment april in paris.

Returning a ranking over the concepts is not a problem for short text, since we can afford

to do an exhaustive search over all the possible concepts assignments as described in the

previous section. The metric still requires for the queries to have the same segmentation,

otherwise it is zero. Note that we can rank the segmentations as well, but we avoided this

for the sake of simplicity of the metric.

The intuition behind the metric is that the concept with which we expect the segment

to be labeled should be as high as possible on the concept ranking for that segment. Let

us say that we expect the concept to be hit for segment april in paris. If our method

produced the ranking that is given above, then the score would be 1
2 for this query, since
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the expected concept hit is in second place in the ranking. As you can see, we use inverse

rank instead of rank, since it is a much more robust measure and it is not sensitive to

outliers. We denote the rank metric of two labeled queries q1 and q2 as rm(q1, q2).

6.3.3 Results

In this section, we present the empirical results of the co-occurrence model vs. concept

co-occurrence model using the exact and rank metric on the dataset of labeled queries that

we generated.

The labeled query dataset consists of 15 query patterns, and for each of them we

generated 100 concrete queries, resulting in 1500 queries. We show some of the query

patterns and query examples that we used in our experiments in Table 6.2.

6.3.3.1 Overall Performance

Table 6.3 shows the overall performance of co-occurrence vs. concept co-occurrence

model. We can see that concept co-occurrence is strongly superior over co-occurrence and

wins by a large margin. This means that concept co-occurrence data can significantly help

with short text understanding task. The results for exact and rank metric are averaged

over all the query examples in our dataset.

In the case of exact metric, we can see that concept co-occurrence has over 15%

improvement over co-occurrence. Co-occurrence was able to correctly predict about 48% of

the queries, while concept co-occurrence predicted correctly over 63% of the queries. This

is a significant improvement and can make a big difference when running in real-world

environments.

With rank metric, co-occurrence achieved a result of 0.597, which means that on

average, the correctly predicted concept was in second place in the ranking. Concept

co-occurrence achieved over 0.12 improvement, resulting in 0.718 average rank metric.

6.3.3.2 Easy Examples

When running the experiments, we found that there are certain query patterns for

which co-occurrence does surprisingly well - similar to concept co-occurrence (Table 6.4).
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Table 6.2. Query patterns and query examples.

Query Pattern Example

[song] lyrics april in paris lryics

[song] sheet goldfinger sheet

[movie] premier james bond premiere

[watch brand] watch rolex watch

[food] recipe cake recipe

[fruit] vitamin apple vitamin

Examples of such queries are: [song] lyrics, [song] music video, [university] degree. A

detailed look into co-occurrence showed that instances (april in paris) of such concepts

([song]) highly correlate with certain very specific words (lyrics), which is the reason the

co-occurrence model performs very well. In other words, when we are dealing with unam-

biguous context, co-occurrence seems to perform well. However, concept co-occurrence still

outperforms the co-occurrence by at least several percentage points on the easy example

as well.

6.3.3.3 Hard Examples

We have also found that certain query patterns are very hard and co-occurrence per-

forms significantly worse than concept co-occurrence (Table 6.4). An example of a hard

query is [song] sheet. The reason for this is because the context is extremely ambiguous.

The second reason is sparsity: many words will not co-occur with atypically words, but

when used together, the meaning of the words is clear.

In our example [song] sheet, the context word is sheet, which has many different

meanings depending on the context in which it occurs. In the context of a song, the

word sheet refers to music sheet. Many songs will not co-occur with sheet or music sheet

when obtaining co-occurrence data. Concept co-occurrence naturally takes care of the

sparsity problem through the generalization process.
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Table 6.3. Overall performance of the methods.

Model Exact Metric Rank Metric

Co-occurrence 0.479 0.597

Concept co-occurrence 0.633 0.718

Table 6.4. Rank metric for a subset of query patterns.

Query Pattern Co-occ. Concept co-occ.

[song] lyrics 0.801 0.895

[song] sheet 0.305 0.681

[film] premiere 0.776 0.873

[watch] watch 0.173 0.59

[food] recipe 0.473 0.592

[furniture] design 0.557 0.651



CHAPTER 7

OTHER APPLICATIONS

In this chapter, we present other applications where we see that concept co-occurrence

can be applied to improve the performance. We will focus on word chunking, word sense

disambiguation, coreference resolution, and triple extraction.

7.1 Word Chunking

Word chunking is a problem of partitioning a given sequence of tokens (e.g. sentence)

into contiguous spans of tokens, called chunks of groups. Each chunk should represent a

meaningful sequence of tokens given the entire sequence. Chunks are often named entities

or word phrases representing concepts.

Let us take a look at a few examples of correct word chunking of a sequence of tokens:

1. April in Paris lyrics

2. vacation April Paris

Analyzing the above examples, we can quickly see that April in Paris is a name of a song

and lyrics often refers to the song concept. Similarly, vacation is a concept that very often

occurs with time (April) and place (Paris).

The problem of word chunking comes down to what is a reasonable or coherent partition

of a given sequence of tokens. In many cases, including the example above, context

knowledge about instances and concepts is required to resolve the correct word chunking.

Exactly such type of knowledge is stored in concept co-occurrence, since it contains context

information about the instances and concepts.
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7.2 Word Sense Disambiguation

Word sense disambiguation (WSD) is about determining which sense of the a word

or word phrase is activated by its use in a particular context. Formally, we are given a

sequence of words {w1, w2, . . . , wn}, and the task is to assign appropriate senses S(wi) to

every word wi, where S(wi) ⊆ D(wi) and D(wi) is a set of all senses for word wi.

Let us take a look at two examples of WSD:

1. watch Harry Potter[movie]

2. read Harry Potter[book]

In the first example, Harry Potter is a movie based on the context word watch, while in

the second example, the word read signalizes that Harry Potter stands for a book.

Using contextual noun phrases and verb phrases is often enough to identify the correct

sense of the word. Concept co-occurrence that we introduced includes co-occurring noun,

verb, and prepositional phrases, in addition to being concept aware.

7.3 Coreference

In a coreference problem, we would like to identify to what the mentions in the

text refer. It is easy to find examples where a coreference problem is very hard and our

representations are clearly not sufficient to solve the problem. We limit ourselves to a

subset of nominal coreference. Below is an example of nominal coreference:

Google invested in Magic Leap. The Mountain View giant is planning to use it for Google

Glass project.

The task of coreference resolution is to figure out that Mountain View giant refers to

Google. Concept co-occurrence would give us a much higher weight of Google as company

co-occurring with Mountain View giant, than with any other instance of the concept com-

pany (Magic Leap). Thus, concept co-occurrence can be a strong signal into a corefrence

resolution system.
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7.4 Triple Extraction

In triple extraction, our goal is to find a verb phrase and two (or at least one) of

its argument, subject, and object. We presented the verb concept representation, which

indicates what kind of concepts often occur as a subject or an object with a given verb

phrase. This information can be used to determine the likelihood of an argument candidate

being an argument of a verb phrase. Let us take a look at the following example:

Students often watch online lectures while eating pizza.

Let us assume that we have two candidates, lectures and pizza, for an object argument

for a verb watch. The verb concept representation tells us that verb watch much more

often occurs with concept lecture than concept food, thus we can safely choose the lecture

as the object argument.



CHAPTER 8

ACQUIRING INSTANCE-CONCEPT

REPRESENTATION

In this chapter, we describe how can we efficiently and effectively obtain instance-

concept representation IR(i, c), for instance i of a concept c. Before we do that, we

introduce concept clusters: instead of obtaining the representation for every (i, c) pair in

our IsA network, we only obtain the representation for every (i, CCs), where CCs is a

concept cluster representing similar concepts for instance i.

8.1 Diverse Concept Clusters

IsA network stores the relationships between concepts and instances: for any instance

i, we have a set of concepts Ci. For large IsA networks, especially when obtained in a

data-driven approach, the set Ci can be very large, containing tens or hundreds of concepts

for an instance i. Many of these concepts are very similar (instance apple contains the

concepts company, it-company, phone-company) and we may want to group them into

a concept cluster. There are applications where differentiating between fine-grained

concepts is important, but for our purposes, we focused on obtained concept representations

for diverse concepts.

Our goal is to select a set of diverse concept clusters, where each cluster contains

similar concepts, and clusters themselves are diverse. For instance apple, we would select

the following two diverse concept clusters: {company, it-company, phone-company, tech

giant} and {food, fruit, fresh-fruit}. Note that concept clusters are instance specific -
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instances can have different concept clusters. For each concept cluster, we also select the

representative of the cluster, which can be used as an id for that cluster.

We employed two main techniques for grouping two concepts into one concept cluster:

• If the concepts have the same head word (it-company, company).

• If the concepts share more then 50% of the instances.

Diverse concept clusters are an input to our method of extracting instance-concept

representations (see next section). Formally, for every instance i, we store a set of concept

clusters {CCi
ci1
, . . . CCi

cin
}, where {ci1, . . . , cin} are concept cluster representatives.

8.2 Vocabulary

Our instance-concept representation consists of co-occurring noun, verb, and preposi-

tional phrases. For each of these three categories, we define the vocabulary of possible

strings:

• Noun phrases: a set of instances and concepts from IsA network (e.g. apple,

company, fruit, April in Paris, New York, I love you).

• Verb phrases: verb phrases that occur at least 1000 times on the web (e.g. play,

influenced by, ask congress, check playlist).

• Prepositional phrases: a set of all English prepositions and prepositional phrases

found in the English dictionary (e.g. alongside, due to, as far as, with regard to).

8.3 Noun Phrase Extraction

Noun phrase extraction deals with extracting co-occurring noun phrases with an instance-

concept pair (i, c). In this context, concept c is the representative concept for the concept

cluster CCi
c as described in previous section. Now, given a particular sentence containing

instance i, how do we determine the sense or concept c for an instance i within the sentence.

We employ the following simple, but very effective and efficient, method:
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We declare i is of concept c (in a particular sentence) if i occurs and c′ ∈ CCi
c occurs

and none of d ∈ CCi
e, e 6= c occur. Otherwise, we ignore the sentence for instance i.

In other words, we only declare instance i of being of a concept c (in a particular sentence)

if there is no presence of concepts from other concept clusters.

To illustrate this, let us look at an example from the previous section where our instance

was apple and concept clusters were {company, it-company, phone-company, tech giant}

and {food, fruit, fresh-fruit} with representatives company and fruit, respectively. We are

given two sentences:

1. Silicon Valley company Apple produces great phones.

2. Many companies are involved in fruit business of apple juice.

In the first sentence, there is a concept (company) from the first concept cluster, and

there are no concepts from the second concept cluster; therefore, we declare apple is of

concept company. In the second sentence, concept (company) is from the first concept

cluster, while concept fruit is from the second concept cluster; we have interference of

concept clusters and therefore, we ignore the sentence.

This techniques is fairly simple, but very effective and works very well in practice. Since

we throw away every sentence where we are not “sure” about the concept, the method may

not a have high recall, but it has a very high precision. In the presence of big text data, we

can afford to throw away many sentences and still obtain very accurate instance-concept

co-occurrence statistics.

Co-occurring noun phrases are simply all the noun-phrases in our vocabulary that occur

in the same sentence with the identified instance-concept pair (i, c). We obtain all such

co-occurrence with their counts and transform them into a probability distributions to

obtain NP (i, c).

8.4 Verb Phrase Extraction

In verb phrase extraction, we find co-occurring verb phrases with an instance-concept

pair (i, c). Note that we differentiate situations, where instance-concept pair is an object or
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subject of a verb phrase. To do this, we used a triple extractor that returns triple relations

of the form (subject, verb phrase, object) within the sentence. We used the same method, as

described in the previous section, to identify concept c for subject and concept c′ for object,

obtaining the co-occurrence between the verb phrase and (subject, c) and the co-occurrence

between the verb phrase and (object, c′). We again count all such co-occurrences and

transform them into a probability distribution to obtain V Psub(i, c) and V Pobj(i, c
′)

8.5 Prepositional Phrase Extraction

Prepositional phrase extraction finds co-occurring prepositional phrases with an instance-

concept pair (i, c). To do this, we searched for pobj relation between prepositional phrase

pp and prepositional object i in dependency tree of the sentence. Then, we identify the

concept c for the prepositional object i using the method described above and output the

co-occurrence between pp and (i, c) We count all such co-occurrences and transform them

into a probability distribution to obtain PP (i, c).



CHAPTER 9

CONCLUSION

The major limitation of term co-occurrence is that there is no explicit conceptual or

syntactical relationship between terms. This motivated us to define concept co-occurrence

that contains co-occurring noun, verb, and prepositional phrases, and is explicitly related

to concepts. We showed how can we successfully obtain high-quality instance-concept

co-occurrence using large corpus of sentences. Concept representations can be obtained

from instance representations through the process of generalization, which is facilitated by

IsA network.

We applied concept aware co-occurrence to the problem of short text understanding.

We defined a joint structured conditional model that leverages concept co-occurrence

knowledge to compute the proper segmentation and disambiguation of the query. Extensive

evaluation showed that concept co-occurrence is superior over co-occurrence. We also

outlined several other NLP applications that could benefit greatly with the use of concept

co-occurrence.
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